Study of the effect of fiber diameter gradient distribution on water transport in the gas diffusion layer of proton exchange membrane fuel cells

被引:0
|
作者
Liao, Jiadong [1 ]
Guo, Xiaobin [1 ]
Zhang, Zhiya [1 ]
Li, Tao [1 ]
Nie, Xianhui [1 ]
Jiang, Ziheng [1 ]
Yang, Miao [1 ]
机构
[1] Powerchina Jiangxi Elect Power Engn Co Ltd, Nanchang 330000, Peoples R China
关键词
Proton exchange membrane fuel cell; Gas diffusion layer; Fiber diameter gradient distribution; Whole water transfer process; Lattice Boltzmann method; LIQUID WATER; PTFE DISTRIBUTION; DROPLET REMOVAL; ELECTRODE; FLOW; IMPACT; GDL; COMPRESSION; SIMULATION; BEHAVIOR;
D O I
10.1007/s11581-025-06086-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Improving water management in the gas diffusion layer (GDL) during operation and shutdown purging can effectively improve the performance and lifetime of proton exchange membrane fuel cells (PEMFCs). The water intrusion and water removal processes in the GDL are linked as the whole water transport process, and the lattice Boltzmann method is used to investigate the dynamic behavior of liquid water during the whole water transport process in the GDL with different fiber diameter gradient distributions at the pore scale. It is found that the structure with 6-7-8-mu m gradient distribution of fiber diameters significantly reduces the number of water clusters and increases the transport path of water through the GDL during water intrusion, and reduces the water saturation within the GDL by 7.519% compared with the case of uniform distribution of fiber diameters. After the completion of purging, the remaining water saturation is the smallest at 0.036 for the structure with the 6-7-8-mu m gradient distribution of fiber diameters. Overall, the structure with the 6-7-8-mu m gradient distribution of fiber diameters has the smallest water saturation in both the water intrusion process and the purging process, and can effectively improve the water management of the GDL.
引用
收藏
页码:2623 / 2635
页数:13
相关论文
共 50 条
  • [31] Pore-Scale Modeling of Liquid Water Transport in Compressed Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Considering Fiber Anisotropy
    Wang, Hao
    Yang, Guogang
    Li, Shian
    Shen, Qiuwan
    Li, Yue
    Wang, Renjie
    MEMBRANES, 2023, 13 (06)
  • [32] Failure behavior of gas diffusion layer in proton exchange membrane fuel cells
    Yang, Yange
    Zhou, Xiangyang
    Tang, Fumin
    Li, Bing
    Ming, Pingwen
    Zhang, Cunman
    JOURNAL OF POWER SOURCES, 2021, 515
  • [33] Characterisation of wettability in gas diffusion layer in proton exchange membrane fuel cells
    Parry, V.
    Appert, E.
    Joud, J. -C.
    APPLIED SURFACE SCIENCE, 2010, 256 (08) : 2474 - 2478
  • [34] Effective permeability of gas diffusion layer in proton exchange membrane fuel cells
    Shou, Dahua
    Tang, Youhong
    Ye, Lin
    Fan, Jintu
    Ding, Feng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (25) : 10519 - 10526
  • [35] Gas diffusion layer for proton exchange membrane fuel cells-A review
    Cindrella, L.
    Kannan, A. M.
    Lin, J. F.
    Saminathan, K.
    Ho, Y.
    Lin, C. W.
    Wertz, J.
    JOURNAL OF POWER SOURCES, 2009, 194 (01) : 146 - 160
  • [36] Effective diffusivity of gas diffusion layer in proton exchange membrane fuel cells
    Shou, Dahua
    Fan, Jintu
    Ding, Feng
    JOURNAL OF POWER SOURCES, 2013, 225 : 179 - 186
  • [37] Effect of Gas Diffusion Layer Surface Wettability Gradient on Water Behavior in a Serpentine Gas Flow Channel of Proton Exchange Membrane Fuel Cell
    Malhotra, Sneha
    Gnash, Sumana
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (08):
  • [38] Janus Gas Diffusion Layer for Enhanced Water Management in Proton Exchange Membrane Fuel Cells (PEMFCs)
    Wen, Qinglin
    Pan, Saifei
    Li, Yali
    Bai, Chuang
    Shen, Min
    Jin, Hanqing
    Ning, Fandi
    Fu, Xuwei
    Zhou, Xiaochun
    ACS ENERGY LETTERS, 2022, 7 (11) : 3900 - 3909
  • [39] Effect of Hierarchical Pores on the Water Transport in Microporous Layer of Proton Exchange Membrane Fuel Cells
    Gu, Tianyi
    Shi, Ruhua
    Guo, Jie
    Wang, Wei
    Wei, Xian
    Zhang, Qian
    Luo, Jie
    Yang, Ruizhi
    ENERGY & FUELS, 2024, 38 (16) : 15714 - 15720
  • [40] Effects of Gas Diffusion Layer Porosity Distribution on Proton Exchange Membrane Fuel Cell
    Yang, Penghui
    Wang, Yongqing
    Yang, Youchen
    Yuan, Lei
    Jin, Zunlong
    ENERGY TECHNOLOGY, 2021, 9 (07)