Multienzyme cascade for synthesis of hydroxytyrosol via engineered Escherichia coli

被引:1
|
作者
Xiong, Tianzhen [1 ,2 ,3 ,5 ]
Li, Xinmeng [1 ,2 ]
Liu, Wei [4 ]
Yue, Huidie [1 ,2 ]
Liu, Junling [1 ,2 ]
Bai, Dingyuan [1 ,2 ]
Li, Wei [1 ,2 ]
Fan, Guangyan [1 ,2 ]
机构
[1] Xinyang Normal Univ, Coll Tea & Food Sci, Dabie Mt Lab, Xinyang 464000, Henan, Peoples R China
[2] Xinyang Normal Univ, Coll Life Sci, Henan Key Lab Tea Plant Biol, Xinyang 464000, Henan, Peoples R China
[3] Xinyang Normal Univ, Coll Tea & Food Sci, Henan Int Joint Lab Tea oil tree Biol & High Value, Xinyang 464000, Henan, Peoples R China
[4] Jilin Acad Agr Sci, Inst Agr Qual Stand & Testing Technol, Changchun 130033, Jilin, Peoples R China
[5] Xinyang Normal Univ, 237 Nanhu Rd, Xinyang 464000, Henan, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Hydroxytyrosol; Escherichia coli; Cascade reaction; Whole cell biotransformation; ANTIOXIDANT HYDROXYTYROSOL; EFFICIENT BIOSYNTHESIS; WHOLE CELLS; CONVERSION; ACID;
D O I
10.1038/s41598-024-84624-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hydroxytyrosol, a fine chemical, is widely utilized in food and pharmaceutical industries. In this study, we constructed a pathway to produce hydroxytyrosol by co-expressing tyrosin-phenol lyase (TPL), L-amino acid dehydrogenase (aadL), alpha-keto acid decarboxylase (KAD), aldehyde reductase (yahK) and glucose dehydrogenase (gdh). We changed combinations between plasmids with different copy numbers and target genes, resulting in 84% increase in hydroxytyrosol production. The yield of hydroxytyrosol was further increased 89.3% by optimizing the temperature and pH. Finally, 55.3 mM hydroxytyrosol was produced within 14 h by fed-batch biotransformation. This study provides a novel approach for hydroxytyrosol production.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Improving isoprenol production via systematic CRISPRi screening in engineered Escherichia coli
    Wang, Jian
    Jiang, Tian
    Milligan, Sierra
    Zhang, Jianli
    Li, Chenyi
    Yan, Yajun
    GREEN CHEMISTRY, 2022, 24 (18) : 6955 - 6964
  • [42] Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli
    Kim, Suk Min
    Choi, Bae Young
    Ryu, Young Shin
    Jung, Sung Hun
    Park, Jung Min
    Kim, Goo-Hee
    Lee, Sung Kuk
    METABOLIC ENGINEERING, 2015, 30 : 141 - 148
  • [43] One-pot, three-step cascade synthesis of D-danshensu using engineered Escherichia coli whole cells
    Xiong, Tianzhen
    Jia, Pu
    Jiang, Jing
    Bai, Yajun
    Fan, Tai-Ping
    Zheng, Xiaohui
    Cai, Yujie
    JOURNAL OF BIOTECHNOLOGY, 2019, 300 : 48 - 54
  • [44] Glucosylation of Isoflavonoids in Engineered Escherichia coli
    Pandey, Ramesh Prasad
    Parajuli, Prakash
    Koirala, Niranjan
    Lee, Joo Ho
    Park, Yong Il
    Sohng, Jae Kyung
    MOLECULES AND CELLS, 2014, 37 (02) : 172 - 177
  • [45] Production of Curcuminoids in Engineered Escherichia coli
    Kim, Eun Ji
    Cha, Mi Na
    Kim, Bong-Gyu
    Ahn, Joong-Hoon
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 27 (05) : 975 - 982
  • [46] A novel genetically engineered pathway for synthesis of poly(hydroxyalkanoic acids) in Escherichia coli
    Liu, SJ
    Steinbüchel, A
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (02) : 739 - 743
  • [47] Renewable synthesis of n-butyraldehyde from glucose by engineered Escherichia coli
    Jason T. Ku
    Wiwik Simanjuntak
    Ethan I. Lan
    Biotechnology for Biofuels, 10
  • [48] Efficient Synthesis of Aminopropyl-Blood Group A Triaose in Engineered Escherichia coli
    Mialy, Randriantsoa
    Sophie, Drouillard
    Sebastien, Fort
    Patricia, Chaud
    Eric, Samain
    Stephane, Havet
    GLYCOBIOLOGY, 2011, 21 (11) : 1471 - 1471
  • [49] Renewable synthesis of n-butyraldehyde from glucose by engineered Escherichia coli
    Ku, Jason T.
    Simanjuntak, Wiwik
    Lan, Ethan I.
    BIOTECHNOLOGY FOR BIOFUELS, 2017, 10
  • [50] Shaking up ancient scents: Insights into santalol synthesis in engineered Escherichia coli
    Wang, Chonglong
    Kim, Seon-Won
    PROCESS BIOCHEMISTRY, 2015, 50 (08) : 1177 - 1183