Geometric rigidity on Sobolev spaces with variable exponent and applications

被引:1
|
作者
Almi, Stefano [1 ,4 ]
Caponi, Maicol [1 ]
Friedrich, Manuel [2 ,3 ]
Solombrino, Francesco [1 ]
机构
[1] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[3] Univ Munster, Math Munster, Einsteinstr 62, D-48149 Munster, Germany
[4] Univ Aquila, Dept Informat Engn Comp Sci & Math, Via Vetoio 1, I-67100 Laquila, Italy
基金
奥地利科学基金会;
关键词
Rigidity estimates; Korn inequality; Variable exponent; Mixed growth; Nonlinear and linear elasticity; Gamma-convergence; GAMMA-LIMIT; NONLINEAR ELASTICITY; GRIFFITH ENERGIES; LINEAR ELASTICITY; INEXTENSIBLE RODS; DERIVATION; REGULARITY; CONVERGENCE; MINIMIZERS; MODELS;
D O I
10.1007/s00030-024-01016-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present extensions of rigidity estimates and of Korn's inequality to the setting of (mixed) variable exponents growth. The proof techniques, based on a classical covering argument, rely on the log-Holder continuity of the exponent to get uniform regularity estimates on each cell of the cover, and on an extension result a la Nitsche in Sobolev spaces with variable exponents. As an application, by means of Gamma-convergence we perform a passage from nonlinear to linearized elasticity under variable subquadratic energy growth far from the energy well.
引用
收藏
页数:50
相关论文
共 50 条
  • [41] Variable exponent Sobolev spaces and regularity of domains-II
    Gorka, Przemyslaw
    Karak, Nijjwal
    Pons, Daniel J.
    REVISTA MATEMATICA COMPLUTENSE, 2024, 37 (03): : 695 - 711
  • [42] Geometry of Sobolev spaces with variable exponent: smoothness and uniform convexity
    Dinca, George
    Matei, Pavel
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (15-16) : 885 - 889
  • [43] COMPACT EMBEDDINGS ON A SUBSPACE OF WEIGHTED VARIABLE EXPONENT SOBOLEV SPACES
    Unal, Cihan
    Aydin, Ismail
    ADVANCES IN OPERATOR THEORY, 2019, 4 (02) : 388 - 405
  • [44] Sobolev embeddings for variable exponent Riesz potentials on metric spaces
    Futamura, Toshihide
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2006, 31 (02) : 495 - 522
  • [45] Asymptotic stability for Kirchhoff systems in variable exponent Sobolev spaces
    Autuori, G.
    Pucci, P.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (7-9) : 715 - 753
  • [46] The Dirichlet energy integral on intervals in variable exponent Sobolev spaces
    Harjulehto, P
    Hästö, P
    Koskenoja, M
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (04): : 911 - 923
  • [47] Characterisation of zero trace functions in variable exponent Sobolev spaces
    Edmunds, D. E.
    Nekvinda, Ales
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (14-15) : 2247 - 2258
  • [48] On the Boundary Limits of Monotone Sobolev Functions in Variable Exponent Orlicz Spaces
    Toshihide FUTAMURA
    Tetsu SHIMOMURA
    Acta Mathematica Sinica,English Series, 2013, (03) : 461 - 470
  • [49] Optimal Control Problem for Bianchi Equation in Variable Exponent Sobolev Spaces
    Bandaliyev, Rovshan A.
    Guliyev, Vagif S.
    Mamedov, Ilgar G.
    Rustamov, Yasin I.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 180 (01) : 303 - 320
  • [50] Optimal Control Problem for Bianchi Equation in Variable Exponent Sobolev Spaces
    Rovshan A. Bandaliyev
    Vagif S. Guliyev
    Ilgar G. Mamedov
    Yasin I. Rustamov
    Journal of Optimization Theory and Applications, 2019, 180 : 303 - 320