An image enhancement based method for improving rPPG extraction under low-light illumination

被引:0
|
作者
Chen, Shutao [1 ]
Wong, Kwan Long [1 ]
Chan, Tze Tai [1 ]
Wang, Ya [2 ]
So, Richard Hau Yue [3 ]
Chin, Jing Wei [1 ]
机构
[1] PanopticAI, Dept Clin AI, Hong Kong, Peoples R China
[2] Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Ind Engn & Decis Analyt, Hong Kong, Peoples R China
关键词
Deep-learning; Remote photoplethysmography; Heart rate estimation; Transfer learning; And image enhancement; COLOR;
D O I
10.1016/j.bspc.2024.106963
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Remote photoplethysmography (rPPG) has gained significant attention as a non-invasive approach for suring human vital signs from videos. However, the reliance on capturing the reflection of ambient lighting causes it to be susceptible to the adverse effects of low illumination levels, leading to deterioration in signal quality. The preliminary study introduces a novel methodology for enhancing rPPG signal extraction in low-light conditions through the integration of an Image Enhancement Model (IEM) inspired by Retinex theory, which significantly improved signal quality by preprocessing video frames to better capture the subtle changes in facial blood flow. Recognizing the challenge posed by the generalization capacity over different deep-learning models and unseen examples from various datasets, this study further evaluated the efficacy the IEM + rPPG extraction model across multiple datasets (UBFC-rPPG, BH-rPPG, MMPD-rPPG, and VIPL-HR) by integrating IEM with existing deep-learning based rPPG extraction models including DeepPhys, PhysNet, and PhysFormer and traditional POS rPPG extraction method. Our experiments demonstrate a consistent improvement for all the methods in heart rate estimation accuracy across all datasets, underscoring the adaptability and effectiveness. The paper also explores the application of our method to traditional extraction techniques, further validating its potential for broader usage. Through comprehensive analysis, research not only confirms the impact of lighting conditions on rPPG signal quality but also provides a robust solution for more reliable non-invasive vital sign monitoring in diverse environments.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Low-light image enhancement based on variational image decomposition
    Su, Yonggang
    Yang, Xuejie
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [32] Low-Light Image Enhancement Based on RAW Domain Image
    Chen L.
    Zhang Y.
    Lyu Z.
    Ding D.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (02): : 303 - 311
  • [33] Low-Light Image Enhancement via Implicit Priors Regularized Illumination Optimization
    Ma, Qianting
    Wang, Yang
    Zeng, Tieyong
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2023, 9 : 944 - 953
  • [34] Low-light image enhancement with joint illumination and noise data distribution transformation
    Guo, Sheng
    Wang, Wei
    Wang, Xiao
    Xu, Xin
    VISUAL COMPUTER, 2023, 39 (04): : 1363 - 1374
  • [35] Low-Light Image Enhancement With Regularized Illumination Optimization and Deep Noise Suppression
    Guo, Yu
    Lu, Yuxu
    Liu, Ryan Wen
    Yang, Meifang
    Chui, Kwok Tai
    IEEE ACCESS, 2020, 8 (145297-145315): : 145297 - 145315
  • [36] Content-illumination coupling guided low-light image enhancement network
    Zhao, Ruini
    Xie, Meilin
    Feng, Xubin
    Su, Xiuqin
    Zhang, Huiming
    Yang, Wei
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [37] Low-light color image enhancement based on NSST
    Wu Xiaochu
    Tang Guijin
    Liu Xiaohua
    Cui Ziguan
    Luo Suhuai
    The Journal of China Universities of Posts and Telecommunications, 2019, 26 (05) : 41 - 48
  • [38] Low-light image enhancement by deep learning network for improved illumination map
    Wang, Manli
    Li, Jiayue
    Zhang, Changsen
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 232
  • [39] Contrast Enhancement of Low-light Image Using Histogram Equalization and Illumination Adjustment
    Banik, Partha Pratim
    Saha, Rappy
    Kim, Ki-Doo
    2018 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2018, : 218 - 221
  • [40] Low-light image enhancement with joint illumination and noise data distribution transformation
    Sheng Guo
    Wei Wang
    Xiao Wang
    Xin Xu
    The Visual Computer, 2023, 39 : 1363 - 1374