An image enhancement based method for improving rPPG extraction under low-light illumination

被引:0
|
作者
Chen, Shutao [1 ]
Wong, Kwan Long [1 ]
Chan, Tze Tai [1 ]
Wang, Ya [2 ]
So, Richard Hau Yue [3 ]
Chin, Jing Wei [1 ]
机构
[1] PanopticAI, Dept Clin AI, Hong Kong, Peoples R China
[2] Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Ind Engn & Decis Analyt, Hong Kong, Peoples R China
关键词
Deep-learning; Remote photoplethysmography; Heart rate estimation; Transfer learning; And image enhancement; COLOR;
D O I
10.1016/j.bspc.2024.106963
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Remote photoplethysmography (rPPG) has gained significant attention as a non-invasive approach for suring human vital signs from videos. However, the reliance on capturing the reflection of ambient lighting causes it to be susceptible to the adverse effects of low illumination levels, leading to deterioration in signal quality. The preliminary study introduces a novel methodology for enhancing rPPG signal extraction in low-light conditions through the integration of an Image Enhancement Model (IEM) inspired by Retinex theory, which significantly improved signal quality by preprocessing video frames to better capture the subtle changes in facial blood flow. Recognizing the challenge posed by the generalization capacity over different deep-learning models and unseen examples from various datasets, this study further evaluated the efficacy the IEM + rPPG extraction model across multiple datasets (UBFC-rPPG, BH-rPPG, MMPD-rPPG, and VIPL-HR) by integrating IEM with existing deep-learning based rPPG extraction models including DeepPhys, PhysNet, and PhysFormer and traditional POS rPPG extraction method. Our experiments demonstrate a consistent improvement for all the methods in heart rate estimation accuracy across all datasets, underscoring the adaptability and effectiveness. The paper also explores the application of our method to traditional extraction techniques, further validating its potential for broader usage. Through comprehensive analysis, research not only confirms the impact of lighting conditions on rPPG signal quality but also provides a robust solution for more reliable non-invasive vital sign monitoring in diverse environments.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Low-Light Image Enhancement Method Based on Retinex Theory by Improving Illumination Map
    Pan, Xinxin
    Li, Changli
    Pan, Zhigeng
    Yan, Jingwen
    Tang, Shiqiang
    Yin, Xinghui
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [2] Low-Light Image Enhancement Based on Illumination Reliability Mask
    Cao, Xiaoqian
    Wang, Yang
    Liu, Weifeng
    Jiao, Denghui
    Computer Engineering and Applications, 2025, 61 (01) : 263 - 271
  • [3] Low-light image enhancement with a refined illumination map
    Shijie Hao
    Zhuang Feng
    Yanrong Guo
    Multimedia Tools and Applications, 2018, 77 : 29639 - 29650
  • [4] Low-light image enhancement based on multi-illumination estimation
    Feng, Xiaomei
    Li, Jinjiang
    Hua, Zhen
    Zhang, Fan
    APPLIED INTELLIGENCE, 2021, 51 (07) : 5111 - 5131
  • [5] Low-light image enhancement based on multi-illumination estimation
    Xiaomei Feng
    Jinjiang Li
    Zhen Hua
    Fan Zhang
    Applied Intelligence, 2021, 51 : 5111 - 5131
  • [6] Low-light image enhancement with a refined illumination map
    Hao, Shijie
    Feng, Zhuang
    Guo, Yanrong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29639 - 29650
  • [7] Adaptive Illumination Estimation for Low-Light Image Enhancement
    Li, Lan
    Peng, Wen-Hao
    Duan, Zhao -Peng
    Pu, Sha-Sha
    ENGINEERING LETTERS, 2024, 32 (03) : 531 - 540
  • [8] ITRE: Low-light image enhancement based on illumination transmission ratio estimation
    Wang, Yu
    Wang, Yihong
    Liu, Tong
    Li, Jinyu
    Sui, Xiubao
    Chen, Qian
    KNOWLEDGE-BASED SYSTEMS, 2024, 303
  • [9] Illumination estimation for nature preserving low-light image enhancement
    Kavinder Singh
    Anil Singh Parihar
    The Visual Computer, 2024, 40 : 121 - 136
  • [10] Illumination estimation for nature preserving low-light image enhancement
    Singh, Kavinder
    Parihar, Anil Singh
    VISUAL COMPUTER, 2024, 40 (01): : 121 - 136