Adaptive optimization for prediction with missing data

被引:0
|
作者
Bertsimas, Dimitris [1 ]
Delarue, Arthur [2 ]
Pauphilet, Jean [3 ]
机构
[1] MIT, Sloan Sch Management, 77 Massachusetts Ave, Cambridge, MA USA
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, 755 Ferst Dr, Atlanta, GA 30332 USA
[3] London Business Sch, Regents Pk, London NW1 4SA, England
关键词
Missing data; Adaptive optimization; IMPUTATION;
D O I
10.1007/s10994-025-06757-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When training predictive models on data with missing entries, the most widely used and versatile approach is a pipeline technique where we first impute missing entries and then compute predictions. In this paper, we view prediction with missing data as a two-stage adaptive optimization problem and propose a new class of models, adaptive linear regression models, where the regression coefficients adapt to the set of observed features. We show that some adaptive linear regression models are equivalent to learning an imputation rule and a downstream linear regression model simultaneously instead of sequentially. We leverage this joint-impute-then-regress interpretation to generalize our framework to non-linear models. In settings where data is strongly not missing at random, our methods achieve a 2-10% improvement in out-of-sample accuracy.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] Attempts Prediction by Missing Data Imputation in Engineering Degree
    Jove, Esteban
    Blanco-Rodriguez, Patricia
    Luis Casteleiro-Roca, Jose
    Moreno-Arboleda, Javier
    Antonio Lopez-Vazquez, Jose
    de Cos Juez, Francisco Javier
    Luis Calvo-Rolle, Jose
    INTERNATIONAL JOINT CONFERENCE SOCO'17- CISIS'17-ICEUTE'17 PROCEEDINGS, 2018, 649 : 167 - 176
  • [42] A cautionary note on the use of the missing indicator method for handling missing data in prediction research
    van Smeden, Maarten
    Groenwold, Rolf H. H.
    Moons, Karel GM.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2020, 125 : 188 - 190
  • [43] Missing Data Treatment in Crash Data: A Heuristic Optimization Weighting Approach
    Asgharpour, Sina
    Javadinasr, Mohammadjavad
    Mohammadian, Ryan
    Mohammadian, Abolfazl
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2023: TRANSPORTATION SAFETY AND EMERGING TECHNOLOGIES, 2023, : 87 - 98
  • [44] Groundwater nitrate monitoring network optimization with missing data
    Nunes, LM
    Paralta, E
    Cunha, MC
    Ribeiro, L
    WATER RESOURCES RESEARCH, 2004, 40 (02) : W024061 - W02406118
  • [45] Semi-parametric optimization for missing data imputation
    Yongsong Qin
    Shichao Zhang
    Xiaofeng Zhu
    Jilian Zhang
    Chengqi Zhang
    Applied Intelligence, 2007, 27 : 79 - 88
  • [46] Semi-parametric optimization for missing data imputation
    Qin, Yongsong
    Zhang, Shichao
    Zhu, Xiaofeng
    Zhang, Jilian
    Zhang, Chengqi
    APPLIED INTELLIGENCE, 2007, 27 (01) : 79 - 88
  • [47] Adaptive Deep Incremental Learning - Assisted Missing Data Imputation for Streaming Data
    Syavasya, C. V. S. R.
    Lakshmi, M. A.
    JOURNAL OF INTERCONNECTION NETWORKS, 2022, 22 (SUPP02)
  • [48] Adaptive Optimization-Enabled Neural Networks to Handle the Imbalance Churn Data in Churn Prediction
    Garimella, Bharathi
    Prasad, G. V. S. N. R. V.
    Prasad, M. H. M. Krishna
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2021, 20 (04)
  • [49] Adaptive response prediction for aerodynamic shape optimization
    Leifsson, Leifur
    Koziel, Slawomir
    ENGINEERING COMPUTATIONS, 2017, 34 (05) : 1485 - 1500
  • [50] Research on adaptive feature optimization and drilling rate prediction based on real-time data
    Ren, Jun
    Jiang, Jie
    Zhou, Changchun
    Li, Qian
    Xu, Zhihua
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 242