Machine Learning-Based Prediction of New Pareto-Optimal Solutions From Pseudo-Weights

被引:3
|
作者
Suresh, Anirudh [1 ]
Deb, Kalyanmoy [2 ]
机构
[1] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
关键词
Task analysis; Optimization; Indexes; Machine learning; Decision making; Predictive models; Prediction algorithms; Machine learning (ML); multicriterion decision making; multiobjective optimization; NONDOMINATED SORTING APPROACH; MULTIOBJECTIVE OPTIMIZATION;
D O I
10.1109/TEVC.2023.3319494
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Owing to the stochasticity of evolutionary multiobjective optimization (EMO) algorithms and an application with a limited budget of solution evaluations, a perfectly converged and uniformly distributed Pareto-optimal (PO) front cannot be always guaranteed. Thus, a subsequent decision-making (DM) step or a curiosity on the part of the optimization researcher may demand solutions at regions not well-represented by the obtained PO front. In this study, we propose to train machine learning (ML) models to capture the mapping between unique identifiers of PO solutions-pseudo-weight vectors, computed from the existing PO front data, and their corresponding decision variable vectors. These learned models can then be used to predict PO decision variables for any new desired pseudo-weight vector. We evaluate the proposed approach with two different ML methods on a variety of multi- and many-objective test and real-world problems. This procedure can also be incorporated into an EMO algorithm to find a better-converged set of PO solutions, attempt to fill apparent gaps, and find more nondominated solutions at preferred regions of the PO front, facilitating a number of key advances for multiobjective optimization and DM tasks.
引用
收藏
页码:1351 / 1365
页数:15
相关论文
共 50 条
  • [41] Machine Learning-Based Approach for Hardware Faults Prediction
    Khalil, Kasem
    Eldash, Omar
    Kumar, Ashok
    Bayoumi, Magdy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 3880 - 3892
  • [42] Machine learning-based prediction of compound profiling matrices
    Perez, Raquel Rodriguez
    Bajorath, Jurgen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [43] Machine learning-based weather prediction with radiosonde observations
    Gogen, Eralp
    Guney, Selda
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2024, 39 (04): : 2317 - 2328
  • [44] Machine Learning-Based Academic Result Prediction System
    Bhushan, Megha
    Verma, Utkarsh
    Garg, Chetna
    Negi, Arun
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2024, 12 (01)
  • [45] Machine Learning-based Pin Accessibility Prediction and Application
    Fang, Shao-Yun
    2021 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2021,
  • [46] Machine Learning-based Corporate Socia Responsibility Prediction
    Teoh, T-T
    Heng, Q. K.
    Chia, J. J.
    Shie, J. M.
    Liaw, S. W.
    Yang, M.
    Nguwi, Y-Y
    PROCEEDINGS OF THE IEEE 2019 9TH INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) ROBOTICS, AUTOMATION AND MECHATRONICS (RAM) (CIS & RAM 2019), 2019, : 501 - 505
  • [47] Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors
    Sahu, Sunil K.
    Shrivastav, Anil
    Swamy, N. K.
    Dubey, Vikas
    Halwar, D. K.
    Kumar, M. Tanooj
    Rao, M. C.
    JOURNAL OF APPLIED SPECTROSCOPY, 2024, 91 (03) : 669 - 677
  • [48] Machine learning-based prediction of FeNi nanoparticle magnetization
    Williamson, Federico
    Naciff, Nadhir
    Catania, Carlos
    dos Santos, Gonzalo
    Amigo, Nicolas
    Bringa, Eduardo M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 5263 - 5276
  • [49] Machine Learning-Based Link Prediction for Hotel Network
    Sevim, Yiğit
    Orman, Günce Keziban
    Yöndem, Meltem Turhan
    IAENG International Journal of Computer Science, 2022, 49 (04)
  • [50] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)