Polypyrrole-bismuth tungstate/polypyrrole core-shell for optoelectronic devices exhibiting Schottky photodiode behavior

被引:0
|
作者
Trabelsi, Amira Ben Gouider [1 ]
Rabia, Mohamed [2 ]
Alkallas, Fatemah H. [1 ]
Kusmartsev, Fedor V. [3 ,4 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Phys, POB 84428, Riyadh 11671, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Chem Dept, Nanomat Sci Res Lab, Bani Suwayf 62514, Egypt
[3] Khalifa Univ, Phys Dept, Abu Dhabi, U Arab Emirates
[4] Loughborough Univ, Phys Dept, Loughborough LE11 3TU, England
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Bismuth tungstate; Polypyrrole; Optoelectronic; Light sensor; Photodiode; PHOTODETECTORS; POLYMERS; CATALYST;
D O I
10.1038/s41598-024-74081-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A polypyrrole-bismuth tungstate (Ppy-Bi2WO6) core-shell nanocomposite (n-type material) has been developed on a layered Ppy (p-type) base as an efficient light-capturing material exhibiting photodiode behavior. This device demonstrates promising sensitivity for light sensing and captures across a broad spectral range, from near IR to UV. The Bi2WO6/Ppy nanocomposite boasts an optimal bandgap of 2.0 eV, compared to 3.4 eV for Ppy and 2.5 eV for Bi2WO6. The crystalline size of the core-shell composite is approximately 21 nm, emphasizing its photon absorption capabilities. The composite particles, around 100 nm in length, feature a highly porous morphology that effectively traps incident photons. The performance of this optoelectronic device is evaluated using current density (J) measurements under light (Jph) and dark (Jo) conditions. In darkness, the n-p type semiconductor exhibits limited current with a Jo of -0.22 mA cm-2 at 2.0 V. When exposed to white light, the Ppy- Bi2WO6/Ppy device generates hot electrons, achieving a Jph value of 1.1 mA/cm-2 at 2.0 V. It shows a superior responsivity (R) of 6.6 mA/W at 340 nm, gradually decreasing to 6.3 mA/W at 440 nm and 4.2 mA/W at 540 nm, indicating high sensitivity across the UV-Vis spectrum. At 730 nm, the R-value is 2.6 mA/W, highlighting its sensitivity in the near IR region. Additionally, at 340 nm, the device achieves a detectivity (D) value of 0.15 x 10(10) Jones, which decreases with longer wavelengths to 0.14 x 10(10) Jones at 440 nm, 0.9 x 10(9) Jones at 540 nm, and 0.63 x 10(9) Jones at 730 nm. With its great stability, low cost, easy fabrication, and potential for mass production, this optoelectronic light sensor and photodiode device holds significant promise for industrial applications as a highly effective optoelectronic device.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction
    Wang, Shibin
    Shi, Gaoquan
    MATERIALS CHEMISTRY AND PHYSICS, 2007, 102 (2-3) : 255 - 259
  • [22] Construction of Redispersible Polypyrrole Core-Shell Nanoparticles for Application in Polymer Electronics
    Wang, Jianjun
    Sun, Ling
    Mpoukouvalas, Konstontinos
    Lienkamp, Karen
    Lieberwirth, Ingo
    Fassbender, Birgit
    Bonaccurso, Elmar
    Brunklaus, Gunther
    Muehlebach, Andreas
    Beierlein, Tilman
    Tilch, Robert
    Butt, Hans-Juergen
    Wegner, Gerhard
    ADVANCED MATERIALS, 2009, 21 (10-11) : 1137 - 1141
  • [23] Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices
    Moon, Hyunjin
    Lee, Habeom
    Kwon, Jinhyeong
    Suh, Young Duk
    Kim, Dong Kwan
    Ha, Inho
    Yeo, Junyeob
    Hong, Sukjoon
    Ko, Seung Hwan
    SCIENTIFIC REPORTS, 2017, 7
  • [24] Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices
    Hyunjin Moon
    Habeom Lee
    Jinhyeong Kwon
    Young Duk Suh
    Dong Kwan Kim
    Inho Ha
    Junyeob Yeo
    Sukjoon Hong
    Seung Hwan Ko
    Scientific Reports, 7
  • [25] Polypyrrole@α-Al2O3 and polypyrrole@CeO2 core-shell hybrid nanocomposites
    Silva, A. S.
    de Souza, S. M.
    Sanches, E. A.
    JOURNAL OF COMPOSITE MATERIALS, 2018, 52 (11) : 1433 - 1441
  • [26] Synthesis of Au-X (X = polypyrrole, silica) core-shell nanorods
    Kim, YJ
    Song, JH
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2005, 26 (02): : 227 - 228
  • [27] Polypyrrole coated PLGA core-shell nanoparticles for drug delivery and photothermal therapy
    Liu, Ming
    Xu, Na
    Liu, Wensen
    Xie, Zhigang
    RSC ADVANCES, 2016, 6 (87): : 84269 - 84275
  • [28] Ternary phase interfacial polymerization of polypyrrole/MWCNT nanocomposites with core-shell structure
    Han, Yongqin
    Shen, Mingxia
    Lin, Xiaochen
    Ding, Bing
    Zhang, Luojiang
    Tong, Hao
    Zhang, Xiaogang
    SYNTHETIC METALS, 2012, 162 (9-10) : 753 - 758
  • [29] Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors
    Mi, Hongyu
    Zhang, Xiaogang
    Ye, Xiangguo
    Yang, Sudong
    JOURNAL OF POWER SOURCES, 2008, 176 (01) : 403 - 409
  • [30] Design of a core-shell structure of Au/poly(divinylbenzene) using polypyrrole interlayer
    Cho, Misuk
    Choi, Chaesuk
    Nam, Jaedo
    Lee, Youngkwan
    INTERMETALLICS, 2010, 18 (04) : 523 - 528