Traveling waves of a modified Holling-Tanner predator-prey model with degenerate diffusive

被引:0
|
作者
Zhao, Zhihong [1 ]
Cui, Huan [1 ]
Shen, Yuwei [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Holling-Tanner model; Degenerate diffusion; Traveling waves; Upper-lower solutions; Asymptotic behavior; MODIFIED LESLIE-GOWER; GLOBAL STABILITY; EXISTENCE; EQUATIONS; SYSTEM; PERSISTENCE; PATTERN;
D O I
10.1007/s00033-024-02339-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the traveling waves for a modified Holling-Tanner predator-prey model with degenerate diffusion. Different from the established approaches of constructing upper-lower solutions, we construct a new and suitable pair of upper-lower solutions by solving three differential equations and establish the existence of traveling waves for any c >= c & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\ge c<^>*$$\end{document} when n >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document}. In addition, we obtain the minimal wave speed c & lowast;=2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c<^>*= 2\sqrt{r}$$\end{document} when n=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=0$$\end{document}, without reconstructing the upper-lower solutions. Furthermore, the asymptotic behavior of traveling waves at infinity is obtained by the upper-lower solutions and the contracting rectangle method.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Dynamic complexity of Holling-Tanner predator-prey system with predator cannibalism
    Zhao, Zhihong
    Shen, Yuwei
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 232 : 227 - 244
  • [32] Spatial patterns of the Holling-Tanner predator-prey model with nonlinear diffusion effects
    Wang, Yu-Xia
    Li, Wan-Tong
    APPLICABLE ANALYSIS, 2013, 92 (10) : 2168 - 2181
  • [33] Holling-Tanner Predator-Prey Model with State-Dependent Feedback Control
    Yang, Jin
    Tang, Guangyao
    Tang, Sanyi
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [34] Bifurcation analysis in a Holling-Tanner predator-prey model with strong Allee effect
    Liu, Yingzi
    Li, Zhong
    He, Mengxin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (05) : 8632 - 8665
  • [35] Stability and Hopf Bifurcation in a Modified Holling-Tanner Predator-Prey System with Multiple Delays
    Zhang, Zizhen
    Yang, Huizhong
    Liu, Juan
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [36] Complex predator invasion waves in a Holling-Tanner model with nonlocal prey interaction
    Bayliss, A.
    Volpert, V. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2017, 346 : 37 - 58
  • [37] The dynamics of a modified Holling-Tanner prey-predator model with wind effect
    Jawad, Shireen
    Sultan, Dina
    Winter, Matthias
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 2203 - 2210
  • [38] Dynamical analysis of a delayed ratio-dependent Holling-Tanner predator-prey model
    Saha, Tapan
    Chakrabarti, Charugopal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 358 (02) : 389 - 402
  • [39] Complex Dynamical Behavior of Holling-Tanner Predator-Prey Model with Cross-Diffusion
    Wang, Caiyun
    Pei, Yongyong
    Niu, Yaqun
    He, Ruiqiang
    COMPLEXITY, 2022, 2022
  • [40] Traveling waves in a diffusive predator-prey model with holling type-III functional response
    Li, Wan-Tong
    Wu, Shi-Liang
    CHAOS SOLITONS & FRACTALS, 2008, 37 (02) : 476 - 486