Traveling waves of a modified Holling-Tanner predator-prey model with degenerate diffusive

被引:0
|
作者
Zhao, Zhihong [1 ]
Cui, Huan [1 ]
Shen, Yuwei [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Holling-Tanner model; Degenerate diffusion; Traveling waves; Upper-lower solutions; Asymptotic behavior; MODIFIED LESLIE-GOWER; GLOBAL STABILITY; EXISTENCE; EQUATIONS; SYSTEM; PERSISTENCE; PATTERN;
D O I
10.1007/s00033-024-02339-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the traveling waves for a modified Holling-Tanner predator-prey model with degenerate diffusion. Different from the established approaches of constructing upper-lower solutions, we construct a new and suitable pair of upper-lower solutions by solving three differential equations and establish the existence of traveling waves for any c >= c & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\ge c<^>*$$\end{document} when n >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document}. In addition, we obtain the minimal wave speed c & lowast;=2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c<^>*= 2\sqrt{r}$$\end{document} when n=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=0$$\end{document}, without reconstructing the upper-lower solutions. Furthermore, the asymptotic behavior of traveling waves at infinity is obtained by the upper-lower solutions and the contracting rectangle method.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] TRAVELING WAVE SOLUTIONS TO DIFFUSIVE HOLLING-TANNER PREDATOR-PREY MODELS
    Wang, Ching-Hui
    Fu, Sheng-Chen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (04): : 2239 - 2255
  • [2] Qualitative analysis on the diffusive Holling-Tanner predator-prey model
    Zhao, Xu
    Zhou, Wenshu
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (41)
  • [3] Bifurcation analysis on a diffusive Holling-Tanner predator-prey model
    Ma, Zhan-Ping
    Li, Wan-Tong
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) : 4371 - 4384
  • [4] Global stability in a diffusive Holling-Tanner predator-prey model
    Chen, Shanshan
    Shi, Junping
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 614 - 618
  • [5] Results on a modified Holling-Tanner predator-prey model
    Nindjin, AF
    Aziz-Alaoui, MA
    Cadivel, M
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2005, 2 : 679 - 684
  • [6] The study of global stability of a diffusive Holling-Tanner predator-prey model
    Qi, Yuanwei
    Zhu, Yi
    APPLIED MATHEMATICS LETTERS, 2016, 57 : 132 - 138
  • [7] DYNAMICS OF A MODIFIED HOLLING-TANNER PREDATOR-PREY MODEL WITH DIFFUSION
    Sambath, M.
    Balachandran, K.
    Jung, Il Hyo
    JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 2019, 23 (02) : 139 - 155
  • [8] Traveling waves of some Holling-Tanner predator-prey system with nonlocal diffusion
    Cheng, Hongmei
    Yuan, Rong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 12 - 24
  • [9] Traveling waves for a generalized Holling Tanner predator-prey model
    Ai, Shangbing
    Du, Yihong
    Peng, Rui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (11) : 7782 - 7814
  • [10] Bifurcation on diffusive Holling-Tanner predator-prey model with stoichiometric density dependence
    Surendar, Maruthai Selvaraj
    Sambath, Muniyagounder
    Balachandran, Krishnan
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2020, 25 (02): : 225 - 244