A hybrid approach for lithium-ion battery remaining useful life prediction using signal decomposition and machine learning

被引:0
|
作者
Fan, Yibiao [1 ]
Lin, Zhishan [2 ]
Wang, Fan [3 ]
Zhang, Jianpeng [3 ]
机构
[1] Longyan Univ, Sch Phys & Mech & Elect Engn, Longyan 361000, Peoples R China
[2] Fujian Antong Elect Co Ltd, Longyan 361000, Peoples R China
[3] Xiamen Univ, Sch Aerosp Engn, Xiamen 361102, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Li-ion batteries; Remaining useful life prediction; Long short-term memory; Support vector regression; CEEMDAN; Sparrow search algorithm; PARTICLE FILTER; MODEL; STATE; DIAGNOSIS;
D O I
10.1038/s41598-025-92262-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium-ion batteries are widely used in many fields, and accurate prediction of their remaining useful life (RUL) was crucial for effective battery management and safety assurance. In order to solve the problem of reduced RUL prediction accuracy caused by the local capacity regeneration phenomenon during battery capacity degradation, this paper proposed a novel RUL prediction method, which combined complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) technique with an innovative hybrid prediction strategy that integrated the support vector regression (SVR) and the long short-term memory (LSTM) networks. First, CEEMDAN was used to decompose the battery capacity data into high-frequency and low-frequency components, thereby reducing the impact of capacity regeneration. Subsequently, the SVR model predicted the low-frequency component that characterized the main degradation trend, and the high-frequency component that contained capacity regeneration features was predicted using an LSTM network optimized by the sparrow search algorithm (SSA). Finally, the final RUL prediction was obtained by combining the predictions of the two models. Experimental results on NASA public datasets showed that the proposed hybrid method significantly outperformed existing methods: the RMSE of the methods proposed in this paper were all less than 0.0086 Ah, the MAE were all less than 0.0060 Ah, the R2 values were all higher than 0.96, and the RUL prediction errors were controlled within one cycle. This method gave full play to the complementary advantages of SVR and LSTM and provided an accurate and reliable solution for RUL prediction of lithium-ion batteries.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery
    Song, Yuchen
    Liu, Datong
    Yang, Chen
    Peng, Yu
    MICROELECTRONICS RELIABILITY, 2017, 75 : 142 - 153
  • [42] Prediction of Battery Remaining Useful Life Using Machine Learning Algorithms
    Sekhar, J. N. Chandra
    Domathoti, Bullarao
    Gonzalez, Ernesto D. R. Santibanez
    SUSTAINABILITY, 2023, 15 (21)
  • [43] Remaining Useful Life Prediction of Lithium-ion Batteries Based on a Hybrid Model
    Lv, Haizhen
    Shen, Dongxu
    Yang, Zhigang
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1003 - 1008
  • [44] Prediction for the Remaining Useful Life of Lithium-ion Battery Based on PCA-NARX
    Pang X.-Q.
    Wang Z.-Q.
    Zeng J.-C.
    Jia J.-F.
    Shi Y.-H.
    Wen J.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2019, 39 (04): : 406 - 412
  • [45] Prediction of Remaining Useful Life of the Lithium-Ion Battery Based on Improved Particle Filtering
    Wu, Tiezhou
    Zhao, Tong
    Xu, Siyun
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [46] Lithium-ion Battery Remaining Useful Life Prediction Under Grey Theory Framework
    Zhou, Zhenwei
    Huang, Yun
    Lu, Yudong
    Shi, Zhengyu
    Zhu, Liangbiao
    Wu, Jiliang
    Li, Hui
    PROCEEDINGS OF 2014 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-2014 HUNAN), 2014, : 297 - 300
  • [47] Lithium-ion battery remaining useful life prediction based on sequential Bayesian updating
    Zhao, Fei
    Guo, Ming
    Liu, Xuejuan
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (02): : 635 - 642
  • [48] A Hybrid Method for Remaining Useful Life Estimation of Lithium-Ion Battery with Regeneration Phenomena
    Zhao, Lin
    Wang, Yipeng
    Cheng, Jianhua
    APPLIED SCIENCES-BASEL, 2019, 9 (09):
  • [49] Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
    Miao, Qiang
    Xie, Lei
    Cui, Hengjuan
    Liang, Wei
    Pecht, Michael
    MICROELECTRONICS RELIABILITY, 2013, 53 (06) : 805 - 810
  • [50] Lithium-ion battery remaining useful life prediction based on GRU-RNN
    Song, Yuchen
    Li, Lyu
    Peng, Yu
    Liu, Datong
    12TH INTERNATIONAL CONFERENCE ON RELIABILITY, MAINTAINABILITY, AND SAFETY (ICRMS 2018), 2018, : 317 - 322