Understanding and training for the impact of large language models and artificial intelligence in healthcare practice: a narrative review

被引:1
|
作者
McCoy, Liam G. [1 ]
Ci Ng, Faye Yu [2 ]
Sauer, Christopher M. [3 ,4 ]
Legaspi, Katelyn Edelwina Yap [5 ,6 ]
Jain, Bhav [4 ]
Gallifant, Jack [4 ,7 ]
McClurkin, Michael [8 ]
Hammond, Alessandro [9 ,10 ]
Goode, Deirdre [11 ]
Gichoya, Judy [12 ]
Celi, Leo Anthony [4 ]
机构
[1] Univ Alberta, Fac Med & Dent, Edmonton, AB, Canada
[2] Natl Univ Singapore, Yong Loo Lin Sch Med, Singapore, Singapore
[3] Univ Hosp Essen, Inst Artificial Intelligence Med, Essen, Germany
[4] MIT, Lab Computat Physiol, Cambridge, MA 02139 USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[6] Univ Philippines Manila, Coll Med, Manila, Philippines
[7] Guys & St ThomasNHS Fdn Trust, Dept Crit Care, London, England
[8] Yale Sch Med, Dept Psychiat, New Haven, CT USA
[9] Harvard Univ, Cambridge, MA USA
[10] Boston Childrens Hosp, Dept Pediat Oncol, Div Hematol Oncol, Boston, MA USA
[11] Beth Israel Deaconess Med Ctr, Dept Emergency Med, Boston, MA USA
[12] Emory Sch Med, Dept Radiol, Atlanta, GA USA
关键词
Language Model; Medical Education; Technology; Ethics;
D O I
10.1186/s12909-024-06048-z
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Reports of Large Language Models (LLMs) passing board examinations have spurred medical enthusiasm for their clinical integration. Through a narrative review, we reflect upon the skill shifts necessary for clinicians to succeed in an LLM-enabled world, achieving benefits while minimizing risks. We suggest how medical education must evolve to prepare clinicians capable of navigating human-AI systems.
引用
收藏
页数:8
相关论文
共 50 条