Locally Discriminating Nonlocal Tripartite Orthogonal Product States with Entanglement Resource

被引:0
|
作者
Cao, Tian-Qing [1 ]
Gao, Bo-Hui [1 ]
Xin, Qiao-Ling [2 ]
机构
[1] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[2] Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Entanglement-assisted local distinguishability; Local operations and classical communication; Orthogonal product state; Less nonlocality with more entanglement; QUANTUM; DISTINGUISHABILITY;
D O I
10.1007/s10773-025-05923-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent years, using entanglement resources to assist the local discrimination of orthogonal quantum states has attracted wide attention. However, many studies mainly focus on entanglement-assisted local discrimination in bipartite systems, and there are relatively few in multipartite states. In this paper, for the nonlocal set of 3d-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3d-3$$\end{document} orthogonal product states in d circle times d circle times d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\otimes d\otimes d$$\end{document}(d >= 3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d\ge 3)$$\end{document} constructed by Zhu et al. (Quantum Inf. Process. 21, 252, 2022), we propose a method of using an ancillary d circle times d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\otimes d$$\end{document} maximally entangled state to realize the local perfect discrimination. Firstly, with a 3 circle times 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\otimes 3$$\end{document} maximally entangled state as an auxiliary resource, we present a method to exactly identify the locally indistinguishable 6 orthogonal product states in 3 circle times 3 circle times 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\otimes 3\otimes 3$$\end{document} by local operations and classical communication (LOCC). Then the distinguishing method can be generalized to the 3d-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3d-3$$\end{document} states in d circle times d circle times d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\otimes d\otimes d$$\end{document}. These results not only reveal the phenomenon of less nonlocality with more entanglement, but also help us better realize the usefulness of entanglement in the local discrimination of quantum states.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Controlled node dialogue in IoT networks based on nonlocal orthogonal product states
    Che, Bichen
    Zheng, Shuntian
    Dou, Zhao
    Chen, Xiubo
    Li, Lixiang
    Li, Jian
    Yang, Yixian
    JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2024, 16 (03) : 317 - 327
  • [42] Nonlocal sets of orthogonal product states with less members in multipartite quantum systems
    Zhang, Yong-Qi
    Jiang, Dong-Huan
    Yang, Yu-Guang
    Xu, Guang-Bao
    QUANTUM INFORMATION PROCESSING, 2024, 23 (12)
  • [43] Dynamic Quantum Secret Sharing Scheme Based on Nonlocal Orthogonal Product States
    Song X.
    Li C.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (03): : 1109 - 1118
  • [44] Experimentally identifying the entanglement class of pure tripartite states
    Amandeep Singh
    Kavita Dorai
    Quantum Information Processing, 2018, 17
  • [45] Experimentally identifying the entanglement class of pure tripartite states
    Singh, Amandeep
    Dorai, Kavita
    Arvind
    QUANTUM INFORMATION PROCESSING, 2018, 17 (12)
  • [46] Measurable entanglement for tripartite quantum pure states of qubits
    Yu, Chang-Shui
    Song, He-Shan
    PHYSICAL REVIEW A, 2007, 76 (02):
  • [47] Effect of relativistic acceleration on tripartite entanglement of Gaussian states
    Szypulski, Jan A.
    Grochowski, Piotr T.
    Debski, Kacper
    Dragan, Andrzej
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2023, 32 (15):
  • [48] Universal tripartite entanglement signature of ungappable edge states
    Siva, Karthik
    Zou, Yijian
    Soejima, Tomohiro
    Mong, Roger S. K.
    Zaletel, Michael P.
    PHYSICAL REVIEW B, 2022, 106 (04)
  • [49] On the structure of a reversible entanglement generating set for tripartite states
    Acin, A
    Vidal, G
    Cirac, JI
    QUANTUM INFORMATION & COMPUTATION, 2003, 3 (01) : 55 - 63
  • [50] Superposition, Entanglement, and Product of States
    Antonio Zecca
    International Journal of Theoretical Physics, 2003, 42 (7) : 1621 - 1628