Light-dependent modulation of protein localization and function in living bacteria cells

被引:1
|
作者
Mcquillen, Ryan [1 ]
Perez, Amilcar J. [1 ]
Yang, Xinxing [1 ]
Bohrer, Christopher H. [1 ]
Smith, Erika L. [2 ]
Chareyre, Sylvia [3 ]
Tsui, Ho-Ching Tiffany [4 ]
Bruce, Kevin E. [4 ]
Hla, Yin Mon [4 ]
Mccausland, Joshua W. [1 ]
Winkler, Malcolm E. [4 ]
Goley, Erin D. [2 ]
Ramamurthi, Kumaran S. [3 ]
Xiao, Jie [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biophys & Biophys Chem, Baltimore, MD 21210 USA
[2] Johns Hopkins Univ, Sch Med, Dept Biol Chem, Baltimore, MD 21205 USA
[3] NCI, Lab Mol Biol, NIH, Bethesda, MD USA
[4] Indiana Univ Bloomington, Dept Biol, Bloomington, IN USA
关键词
INDUCED DIMERIZATION; DIVISION PROTEIN; GENE-EXPRESSION; SPATIOTEMPORAL CONTROL; FTSZ; ORGANIZATION; DYNAMICS; TRANSCRIPTION; ACTIVATION; ASYMMETRY;
D O I
10.1038/s41467-024-54974-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E. coli cells. We further show that CRY2-CIBN binding kinetics can be modulated by green light, adding a new dimension of control to the system. Finally, we test this optogenetic system in three additional bacterial species, Bacillus subtilis, Caulobacter crescentus, and Streptococcus pneumoniae, providing important considerations for this system's applicability in bacterial cell biology.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] LIGHT-DEPENDENT DEGRADATION OF THE QB-PROTEIN IN ISOLATED PEA THYLAKOIDS
    OHAD, I
    KYLE, DJ
    HIRSCHBERG, J
    EMBO JOURNAL, 1985, 4 (07): : 1655 - 1659
  • [32] Light-dependent regulation of NMDA rRceptors in rat retinal ganglion cells is not
    Albach, G
    Schmid, S
    Wheeler-Schilling, T
    Fauser, S
    Guenther, E
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2002, 43 : U632 - U632
  • [33] Light-Dependent Electrical Activity in Sea Urchin Tube Feet Cells
    Marconi, Lauren J.
    Stivale, Avery
    Shah, Muneeb A.
    Shelley, Chris
    BIOLOGICAL BULLETIN, 2019, 236 (02): : 108 - 114
  • [34] LIGHT-DEPENDENT RUBIDIUM TRANSPORT IN INTACT HALOBACTERIUM-HALOBIUM CELLS
    GARTY, H
    CAPLAN, SR
    BIOCHIMICA ET BIOPHYSICA ACTA, 1977, 459 (03) : 532 - 545
  • [35] Light-Dependent Intracellular Positioning of Mitochondria in Arabidopsis thaliana Mesophyll Cells
    Islam, Md. Sayeedul
    Niwa, Yasuo
    Takagi, Shingo
    PLANT AND CELL PHYSIOLOGY, 2009, 50 (06) : 1032 - 1040
  • [36] Light-dependent subcellular localization of nucleoside diphosphate kinase-1 in Neurospora crassa
    Yoshida, Yusuke
    Hasunuma, Kohji
    FEMS MICROBIOLOGY LETTERS, 2006, 261 (01) : 64 - 68
  • [37] Rates and mechanism of light-dependent degradation of sterols in senescent cells of phytoplankton
    Rontani, JF
    Cuny, P
    Aubert, C
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 1997, 111 (1-3) : 139 - 144
  • [38] Light-dependent and rhythmic psbA transcripts in homologous/heterologous cyanobacterial cells
    Agrawal, GK
    Asayama, M
    Shirai, M
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 255 (01) : 47 - 53
  • [39] CARBONIC-ANHYDRASE AND LIGHT-DEPENDENT ALKALIZATION OF THE MEDIUM BY CHLORELLA CELLS
    PESHEVA, IS
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1987, 40 (10): : 95 - 97
  • [40] Blue light-dependent nuclear positioning in Arabidopsis thaliana leaf cells
    Iwabuchi, Kosei
    Sakai, Tatsuya
    Takagi, Shingo
    PLANT AND CELL PHYSIOLOGY, 2007, 48 (09) : 1291 - 1298