Light-dependent modulation of protein localization and function in living bacteria cells

被引:1
|
作者
Mcquillen, Ryan [1 ]
Perez, Amilcar J. [1 ]
Yang, Xinxing [1 ]
Bohrer, Christopher H. [1 ]
Smith, Erika L. [2 ]
Chareyre, Sylvia [3 ]
Tsui, Ho-Ching Tiffany [4 ]
Bruce, Kevin E. [4 ]
Hla, Yin Mon [4 ]
Mccausland, Joshua W. [1 ]
Winkler, Malcolm E. [4 ]
Goley, Erin D. [2 ]
Ramamurthi, Kumaran S. [3 ]
Xiao, Jie [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biophys & Biophys Chem, Baltimore, MD 21210 USA
[2] Johns Hopkins Univ, Sch Med, Dept Biol Chem, Baltimore, MD 21205 USA
[3] NCI, Lab Mol Biol, NIH, Bethesda, MD USA
[4] Indiana Univ Bloomington, Dept Biol, Bloomington, IN USA
关键词
INDUCED DIMERIZATION; DIVISION PROTEIN; GENE-EXPRESSION; SPATIOTEMPORAL CONTROL; FTSZ; ORGANIZATION; DYNAMICS; TRANSCRIPTION; ACTIVATION; ASYMMETRY;
D O I
10.1038/s41467-024-54974-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E. coli cells. We further show that CRY2-CIBN binding kinetics can be modulated by green light, adding a new dimension of control to the system. Finally, we test this optogenetic system in three additional bacterial species, Bacillus subtilis, Caulobacter crescentus, and Streptococcus pneumoniae, providing important considerations for this system's applicability in bacterial cell biology.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Light-dependent gene regulation in nonphototrophic bacteria
    Elias-Arnanz, Montserrat
    Padmanabhan, S.
    Murillo, Francisco J.
    CURRENT OPINION IN MICROBIOLOGY, 2011, 14 (02) : 128 - 135
  • [2] LIGHT-DEPENDENT PHOSPHORYLATION OF RHODOPSIN IN LIVING FROGS
    KUHN, H
    NATURE, 1974, 250 (5467) : 588 - 590
  • [3] THE LIGHT-DEPENDENT MODULATION OF PHOTOSYNTHETIC ELECTRON-TRANSPORT
    CARRILLO, N
    VALLEJOS, RH
    TRENDS IN BIOCHEMICAL SCIENCES, 1983, 8 (02) : 52 - 56
  • [4] An RNA Motif That Enables Optozyme Control and Light-Dependent Gene Expression in Bacteria and Mammalian Cells
    Pietruschka, Georg
    Ranzani, Americo T.
    Weber, Anna
    Patwari, Tejal
    Pilsl, Sebastian
    Renzl, Christian
    Otte, David M.
    Pyka, Daniel
    Moeglich, Andreas
    Mayer, Guenter
    ADVANCED SCIENCE, 2024, 11 (12)
  • [5] LIGHT-DEPENDENT NITRATE REDUCTION BY CHLORELLA CELLS
    DEMIDOV, ED
    PAVLOVA, EA
    SMOLOV, AP
    SOVIET PLANT PHYSIOLOGY, 1986, 33 (05): : 700 - 707
  • [6] RESOLUTION OF THE LIGHT-DEPENDENT MODULATION SYSTEM OF PEA-CHLOROPLASTS
    ASHTON, AR
    ANDERSON, LE
    BIOCHIMICA ET BIOPHYSICA ACTA, 1981, 638 (02) : 242 - 249
  • [7] Peropsin Effects Light-dependent Modulation of Retinyl Esters in the RPE
    Cook, Jeremy D.
    Ng, Eunice
    Lloyd, Marcia
    Eddington, Shannan
    Bok, Dean
    Sun, Hui
    Radu, Roxana A.
    Travis, Gabriel H.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [8] Analysis of light-dependent dynamics of protein complexes in the retina
    Beer, M.
    Swiatek-De Lange, M.
    Ueffing, M.
    MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (08) : S35 - S35
  • [9] A LIGHT-DEPENDENT PROTEIN-KINASE ACTIVITY OF CHLOROPLASTS
    ALFONZO, R
    NELSON, N
    RACKER, E
    PLANT PHYSIOLOGY, 1980, 65 (04) : 730 - 734
  • [10] Evidence for light-dependent and light-independent protein dephosphorylation in chloroplasts
    Elich, TD
    Edelman, M
    Mattoo, AK
    FEBS LETTERS, 1997, 411 (2-3) : 236 - 238