Complexity of scheduling few types of jobs on related and unrelated machines

被引:0
|
作者
Koutecky, Martin [1 ]
Zink, Johannes [2 ]
机构
[1] Charles Univ Prague, Prague, Czech Republic
[2] Univ Wurzburg, Wurzburg, Germany
关键词
High-multiplicity jobs; Cutting stock; Hardness; Parameterized complexity; INTEGER; ALGORITHM;
D O I
10.1007/s10951-024-00827-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The task of scheduling jobs to machines while minimizing the total makespan, the sum of weighted completion times, or a norm of the load vector are among the oldest and most fundamental tasks in combinatorial optimization. Since all of these problems are in general NP-hard, much attention has been given to the regime where there is only a small number k of job types, but possibly the number of jobs n is large; this is the few job types, high-multiplicity regime. Despite many positive results, the hardness boundary of this regime was not understood until now. We show that makespan minimization on uniformly related machines (Q|HM|Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q|HM|C_{\max }$$\end{document}) is NP-hard already with 6 job types, and that the related Cutting Stock problem is NP-hard already with 8 item types. For the more general unrelated machines model (R|HM|Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R|HM|C_{\max }$$\end{document}), we show that if the largest job size pmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{\max }$$\end{document} or the number of jobs n is polynomially bounded in the instance size |I|, there are algorithms with complexity |I|poly(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|I|<^>{{{\,\mathrm{\textrm{poly}}\,}}(k)}$$\end{document}. Our main result is that this is unlikely to be improved because Q||Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q||C_{\max }$$\end{document} is W[1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {W[1]}$$\end{document}-hard parameterized by k already when n, pmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{\max }$$\end{document}, and the numbers describing the machine speeds are polynomial in |I|; the same holds for R||Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R||C_{\max }$$\end{document} (without machine speeds) when the job sizes matrix has rank 2. Our positive and negative results also extend to the objectives & ell;2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _2$$\end{document}-norm minimization of the load vector and, partially, sum of weighted completion times & sum;wjCj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum w_j C_j$$\end{document}. Along the way, we answer affirmatively the question whether makespan minimization on identical machines (P||Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P||C_{\max }$$\end{document}) is fixed-parameter tractable parameterized by k, extending our understanding of this fundamental problem. Together with our hardness results for Q||Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q||C_{\max }$$\end{document}, this implies that the complexity of P|HM|Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P|HM|C_{\max }$$\end{document} is the only remaining open case.
引用
收藏
页码:139 / 156
页数:18
相关论文
共 50 条
  • [42] Scheduling MapReduce Jobs on Identical and Unrelated Processors
    Dimitris Fotakis
    Ioannis Milis
    Orestis Papadigenopoulos
    Vasilis Vassalos
    Georgios Zois
    Theory of Computing Systems, 2020, 64 : 754 - 782
  • [43] SCHEDULING OF CONDITIONAL EXECUTED JOBS ON UNRELATED PROCESSORS
    JANSEN, K
    DISCRETE APPLIED MATHEMATICS, 1995, 61 (03) : 245 - 255
  • [44] Online scheduling of jobs with favorite machines
    Chen, Cong
    Penna, Paolo
    Xu, Yinfeng
    COMPUTERS & OPERATIONS RESEARCH, 2020, 116
  • [45] Scheduling Jobs on Dedicated Parallel Machines
    Shim, Sang-Oh
    Choi, Seong-Woo
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING II, PTS 1-3, 2013, 433-435 : 2363 - +
  • [46] HEURISTICS FOR SCHEDULING UNRELATED PARALLEL MACHINES
    HARIRI, AMA
    POTTS, CN
    COMPUTERS & OPERATIONS RESEARCH, 1991, 18 (03) : 323 - 331
  • [47] Stochastic Online Scheduling on Unrelated Machines
    Gupta, Varun
    Moseley, Benjamin
    Uetz, Marc
    Xie, Qiaomin
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2017, 2017, 10328 : 228 - 240
  • [48] Iterated Local Search Based Heuristic for Scheduling Jobs on Unrelated Parallel Machines with Machine Deterioration Effect
    Aguiar Santos, Vivian L.
    Arroyo, Jose Elias C.
    Carvalho, Thales F. M.
    PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'16 COMPANION), 2016, : 53 - 54
  • [49] Scheduling unrelated machines by randomized rounding
    Schulz, AS
    Skutella, M
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2002, 15 (04) : 450 - 469
  • [50] Preemptive online scheduling with rejection of unit jobs on two uniformly related machines
    Leah Epstein
    Hanan Zebedat-Haider
    Journal of Scheduling, 2014, 17 : 87 - 93