Complexity of scheduling few types of jobs on related and unrelated machines

被引:0
|
作者
Koutecky, Martin [1 ]
Zink, Johannes [2 ]
机构
[1] Charles Univ Prague, Prague, Czech Republic
[2] Univ Wurzburg, Wurzburg, Germany
关键词
High-multiplicity jobs; Cutting stock; Hardness; Parameterized complexity; INTEGER; ALGORITHM;
D O I
10.1007/s10951-024-00827-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The task of scheduling jobs to machines while minimizing the total makespan, the sum of weighted completion times, or a norm of the load vector are among the oldest and most fundamental tasks in combinatorial optimization. Since all of these problems are in general NP-hard, much attention has been given to the regime where there is only a small number k of job types, but possibly the number of jobs n is large; this is the few job types, high-multiplicity regime. Despite many positive results, the hardness boundary of this regime was not understood until now. We show that makespan minimization on uniformly related machines (Q|HM|Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q|HM|C_{\max }$$\end{document}) is NP-hard already with 6 job types, and that the related Cutting Stock problem is NP-hard already with 8 item types. For the more general unrelated machines model (R|HM|Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R|HM|C_{\max }$$\end{document}), we show that if the largest job size pmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{\max }$$\end{document} or the number of jobs n is polynomially bounded in the instance size |I|, there are algorithms with complexity |I|poly(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|I|<^>{{{\,\mathrm{\textrm{poly}}\,}}(k)}$$\end{document}. Our main result is that this is unlikely to be improved because Q||Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q||C_{\max }$$\end{document} is W[1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {W[1]}$$\end{document}-hard parameterized by k already when n, pmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{\max }$$\end{document}, and the numbers describing the machine speeds are polynomial in |I|; the same holds for R||Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R||C_{\max }$$\end{document} (without machine speeds) when the job sizes matrix has rank 2. Our positive and negative results also extend to the objectives & ell;2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _2$$\end{document}-norm minimization of the load vector and, partially, sum of weighted completion times & sum;wjCj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum w_j C_j$$\end{document}. Along the way, we answer affirmatively the question whether makespan minimization on identical machines (P||Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P||C_{\max }$$\end{document}) is fixed-parameter tractable parameterized by k, extending our understanding of this fundamental problem. Together with our hardness results for Q||Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q||C_{\max }$$\end{document}, this implies that the complexity of P|HM|Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P|HM|C_{\max }$$\end{document} is the only remaining open case.
引用
收藏
页码:139 / 156
页数:18
相关论文
共 50 条
  • [1] Scheduling unrelated machines with two types of jobs
    Vakhania, Nodari
    Alberto Hernandez, Jose
    Werner, Frank
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2014, 52 (13) : 3793 - 3801
  • [2] An EPTAS for Scheduling on Unrelated Machines of Few Different Types
    Jansen, Klaus
    Maack, Marten
    ALGORITHMICA, 2019, 81 (10) : 4134 - 4164
  • [3] An EPTAS for Scheduling on Unrelated Machines of Few Different Types
    Klaus Jansen
    Marten Maack
    Algorithmica, 2019, 81 : 4134 - 4164
  • [4] A PTAS for Scheduling Unrelated Machines of Few Different Types
    Gehrke, Jan Clemens
    Jansen, Klaus
    Kraft, Stefan E. J.
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2018, 29 (04) : 591 - 621
  • [5] An EPTAS for Scheduling on Unrelated Machines of Few Different Types
    Jansen, Klaus
    Maack, Marten
    ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 : 497 - 508
  • [6] Scheduling unrelated parallel machines with optional machines and jobs selection
    Fanjul-Peyro, Luis
    Ruiz, Ruben
    COMPUTERS & OPERATIONS RESEARCH, 2012, 39 (07) : 1745 - 1753
  • [7] Strong LP formulations for scheduling splittable jobs on unrelated machines
    Correa, Jose
    Marchetti-Spaccamela, Alberto
    Matuschke, Jannik
    Stougie, Leen
    Svensson, Ola
    Verdugo, Victor
    Verschae, Jose
    MATHEMATICAL PROGRAMMING, 2015, 154 (1-2) : 305 - 328
  • [8] Scheduling deteriorating jobs with a learning effect on unrelated parallel machines
    Wang, Xiao-Yuan
    Wang, Jian-Jun
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (21-22) : 5231 - 5238
  • [9] Strong LP formulations for scheduling splittable jobs on unrelated machines
    José Correa
    Alberto Marchetti-Spaccamela
    Jannik Matuschke
    Leen Stougie
    Ola Svensson
    Víctor Verdugo
    José Verschae
    Mathematical Programming, 2015, 154 : 305 - 328
  • [10] Partitioned EDF scheduling on a few types of unrelated multiprocessors
    Wiese, Andreas
    Bonifaci, Vincenzo
    Baruah, Sanjoy
    REAL-TIME SYSTEMS, 2013, 49 (02) : 219 - 238