The degree of a class of minimal non-PS-groupsThe degree of a class of minimal non-PS-groupsM. H. Abbaspour

被引:0
|
作者
Mohammad Hassan Abbaspour [1 ]
机构
[1] Khoy Branch,Department of Mathematics
[2] Islamic Azad University,undefined
关键词
Degree of a group; Minimal non-; -group; Primary 20C15; Secondary 20B05;
D O I
10.1007/s12215-024-01111-6
中图分类号
学科分类号
摘要
We show that the least n such that we can embed the minimal non-PS-group G=〈a,b:aq=b4=1,ab=baq-1〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\,G ={\big <}a, b \,:\, a^{q} = b^{4} = 1, ab=ba^{q-1} {\big >}$$\end{document} in the symmetric group Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{S}_{n}$$\end{document} is q+4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q+4$$\end{document}.
引用
收藏
页码:3393 / 3395
页数:2
相关论文
共 50 条
  • [1] The degree of a class of minimal non-PS-groups
    Abbaspour, Mohammad Hassan
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (08) : 3393 - 3395
  • [2] The minimal degree for a class of finite complex reflection groups
    Saunders, Neil
    JOURNAL OF ALGEBRA, 2010, 323 (03) : 561 - 573
  • [3] A complete classification of minimal non-PS-groups
    Guo, Pengfei
    Wang, Junxin
    Zhang, Hailiang
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (04): : 511 - 516
  • [4] A complete classification of minimal non-PS-groups
    PENGFEI GUO
    JUNXIN WANG
    HAILIANG ZHANG
    Proceedings - Mathematical Sciences, 2014, 124 : 511 - 516
  • [5] CLASS OF MINIMAL, NON-PLANABLE GRAPHS
    WAGNER, K
    MATHEMATISCHE ANNALEN, 1970, 187 (02) : 104 - &
  • [6] Non-minimal Degree-Sequence-Forcing Triples
    Michael D. Barrus
    Stephen G. Hartke
    Mohit Kumbhat
    Graphs and Combinatorics, 2015, 31 : 1189 - 1209
  • [7] Non-minimal Degree-Sequence-Forcing Triples
    Barrus, Michael D.
    Hartke, Stephen G.
    Kumbhat, Mohit
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1189 - 1209
  • [8] A 2-MINIMAL NON-GL2 DEGREE
    Cai, Mingzhong
    JOURNAL OF MATHEMATICAL LOGIC, 2010, 10 (1-2) : 1 - 30
  • [9] THE MINIMAL RESISTANCE PROBLEM IN A CLASS OF NON CONVEX BODIES
    Mainini, Edoardo
    Monteverde, Manuel
    Oudet, Edouard
    Percivale, Danilo
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
  • [10] ONE CLASS OF MONOMIAL MINIMAL NON-REDUCIBLE GROUPS
    SUPRUNENKO, DA
    DOKLADY AKADEMII NAUK BELARUSI, 1976, 20 (10): : 869 - 872