Kirby Diagram of Polar Flows on Four-Dimensional Manifolds

被引:0
|
作者
Gurevich, E. Ya. [1 ]
Saraev, I. A. [1 ]
机构
[1] Natl Res Univ Higher Sch Econ Nizhny Novgorod, Nizhnii Novgorod 603155, Russia
基金
俄罗斯科学基金会;
关键词
polar flow; gradient-like flow; structurally stable flow; topological classification; Kirby diagram; TOPOLOGY; SYSTEMS; LINKS;
D O I
10.1134/S0001434624070046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve the topological classification problem for polar flows on closed four-dimensional manifolds whose set of saddle equilibrium states consists only of points having two-dimensional stable and unstable manifolds. It is shown that the Kirby diagram, which is a framed link on a secant sphere to the flow, is a complete topological invariant for such flows.
引用
收藏
页码:40 / 57
页数:18
相关论文
共 50 条
  • [31] Critical point equation on four-dimensional compact manifolds
    Barros, Abdenago
    Ribeiro, Ernani, Jr.
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (14-15) : 1618 - 1623
  • [32] NONLINEAR SCHRODINGER EQUATION ON FOUR-DIMENSIONAL COMPACT MANIFOLDS
    Gerard, Patrick
    Pierfelice, Vittoria
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2010, 138 (01): : 119 - 151
  • [33] Quantum Periods for Certain Four-Dimensional Fano Manifolds
    Coates, Tom
    Galkin, Sergey
    Kasprzyk, Alexander
    Strangeway, Andrew
    EXPERIMENTAL MATHEMATICS, 2020, 29 (02) : 183 - 221
  • [34] MODIFIED YAMABE PROBLEM ON FOUR-DIMENSIONAL COMPACT MANIFOLDS
    Costa, E.
    Ribeiro, E., Jr.
    Santos, A.
    HOUSTON JOURNAL OF MATHEMATICS, 2016, 42 (04): : 1141 - 1156
  • [35] Spectral properties of four-dimensional compact flat manifolds
    Miatello, RJ
    Podestá, R
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2006, 29 (01) : 17 - 50
  • [36] Four-dimensional manifolds with pinched positive sectional curvature
    Diogenes, R.
    Ribeiro, E., Jr.
    GEOMETRIAE DEDICATA, 2019, 200 (01) : 321 - 330
  • [38] Two-dimensional invariant manifolds in four-dimensional dynamical systems
    Osinga, HM
    COMPUTERS & GRAPHICS-UK, 2005, 29 (02): : 289 - 297
  • [39] Four-dimensional algebraic solitons associated to geometric flows
    Ferreiro-Subrido, M.
    Garcia-Rio, E.
    Vazquez-Lorenzo, R.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (02)
  • [40] Four-dimensional generalized Ricci flows with nilpotent symmetry
    Gindi, Steven
    Streets, Jeffrey
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (07)