A deep ensemble learning approach for squamous cell classification in cervical cancer

被引:0
|
作者
Gangrade, Jayesh [1 ]
Kuthiala, Rajit [1 ]
Gangrade, Shweta [2 ]
Singh, Yadvendra Pratap [1 ]
Manoj, R. [3 ]
Solanki, Surendra [1 ]
机构
[1] Manipal Univ Jaipur, Sch Comp Sci & Engn, Dept Artificial Intelligence & Machine Learning, Jaipur, Rajasthan, India
[2] Manipal Univ Jaipur, Sch Comp Sci & Engn, Dept Informat Technol, Jaipur, Rajasthan, India
[3] Manipal Inst Technol Manipal, Manipal Acad Higher Educ, Dept Comp Sci & Engn, Udupi, Karnataka, India
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Cervical Cancer; Image Classification; AlexNet; SqueezeNet; Ensemble Learning; IMAGES;
D O I
10.1038/s41598-025-91786-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cervical cancer, arising from the cells of the cervix, the lower segment of the uterus connected to the vagina-poses a significant health threat. The microscopic examination of cervical cells using Pap smear techniques plays a crucial role in identifying potential cancerous alterations. While developed nations demonstrate commendable efficiency in Pap smear acquisition, the process remains laborious and time-intensive. Conversely, in less developed regions, there is a pressing need for streamlined, computer-aided methodologies for the pre-analysis and treatment of cervical cancer. This study focuses on the classification of squamous cells into five distinct classes, providing a nuanced assessment of cervical cancer severity. Utilizing a dataset comprising over 4096 images from SimpakMed, available on Kaggle, we employed ensemble technique which included the Convolutional Neural Network (CNN), AlexNet, and SqueezeNet for image classification, achieving accuracies of 90.8%, 92%, and 91% respectively. Particularly noteworthy is the proposed ensemble technique, which surpasses individual model performances, achieving an impressive accuracy of 94%. This ensemble approach underscores the efficacy of our method in precise squamous cell classification and, consequently, in gauging the severity of cervical cancer. The results represent a promising advancement in the development of more efficient diagnostic tools for cervical cancer in resource-constrained settings.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A Deep Learning Approach for the Classification of Neuronal Cell Types
    Buccino, Alessio P.
    Ness, Torbjorn, V
    Einevoll, Gaute T.
    Cauwenberghs, Gert
    Hafliger, Philipp D.
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 999 - 1002
  • [42] A Deep Learning Approach to Unsupervised Ensemble Learning
    Shaham, Uri
    Cheng, Xiuyuan
    Dror, Omer
    Jaffe, Ariel
    Nadler, Boaz
    Chang, Joseph
    Kluger, Yuval
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [43] Deep Learning-Based Multi-Modal Ensemble Classification Approach for Human Breast Cancer Prognosis
    Jadoon, Ehtisham Khan
    Khan, Fiaz Gul
    Shah, Sajid
    Khan, Ahmad
    ElAffendi, Muhammed
    IEEE ACCESS, 2023, 11 : 85760 - 85769
  • [44] Deep learning ensemble approach with explainable AI for lung and colon cancer classification using advanced hyperparameter tuning
    Vanitha, K.
    Mahesh, T. R.
    Sree, S. Sathea
    Guluwadi, Suresh
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [45] Ensemble Model with Deep Learning for Melanoma Classification
    Suganthi, N. Mohana
    Arun, M.
    Chitra, A.
    Rajpriya, R.
    Gayathri, B.
    Padmini, B.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 1541 - 1545
  • [46] Deep Ensemble Learning for Retinal Image Classification
    Ho, Edward
    Wang, Edward
    Youn, Saerom
    Sivajohan, Asaanth
    Lane, Kevin
    Chun, Jin
    Hutnik, Cindy M. L.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2022, 11 (10):
  • [47] A deep ensemble learning method for cherry classification
    Kiyas Kayaalp
    European Food Research and Technology, 2024, 250 : 1513 - 1528
  • [48] A deep ensemble learning method for cherry classification
    Kayaalp, Kiyas
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2024, 250 (05) : 1513 - 1528
  • [49] Cinematographic Shot Classification with Deep Ensemble Learning
    Vacchetti, Bartolomeo
    Cerquitelli, Tania
    ELECTRONICS, 2022, 11 (10)
  • [50] Deep Learning Ensemble for Hyperspectral Image Classification
    Chen, Yushi
    Wang, Ying
    Gu, Yanfeng
    He, Xin
    Ghamisi, Pedram
    Jia, Xiuping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (06) : 1882 - 1897