The clustered Mallows model

被引:0
|
作者
Piancastelli, Luiza S. C. [1 ]
Friel, Nial [1 ,2 ]
机构
[1] Univ Coll Dublin, Sch Math & Stat, Belfield, Ireland
[2] Insight Ctr Data Analyt, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
Mallows model; Ranking data; Bayesian learning; Clustering; Rank aggregation; RANKING; INFERENCE;
D O I
10.1007/s11222-024-10555-w
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Rankings represent preferences that arise from situations where assessors arrange items, for example, in decreasing order of utility. Orderings of the item set are permutations (pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}) that reflect strict preferences. However, strict preference relations can be unrealistic for real data. Common traits among items can justify equal ranks and there can also be different importance attribution to decisions that form pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}. In large item sets, assessors might prioritise certain items, rank others low, and express indifference towards the remaining. Rank aggregation may involve decisive judgments in some parts and ambiguity in others. In this paper, we extend the famous Mallows (Biometrika 44:114-130, 1957) model (MM) to accommodate item indifference. Grouping similar items motivates the proposed Clustered Mallows Model (CMM), a MM counterpart for tied ranks with ties learned from the data. The CMM provides the flexibility to combine strictness and indifferences, describing rank collections as ordered clusters. CMM Bayesian inference is a doubly-intractable problem since the normalised model is unavailable. We overcome this with a version of the exchange algorithm (Murray et al. in Proceedings of the 22nd annual conference on uncertainty in artificial intelligence (UAI-06), 2006) and provide a pseudo-likelihood approximation as a computationally cheaper alternative. Analysis of two real-world ranking datasets is presented, showcasing the practical application of the CMM and highlighting scenarios where it offers advantages over alternative models.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Introducing the Mallows Model on Estimation of Distribution Algorithms
    Ceberio, Josu
    Mendiburu, Alexander
    Lozano, Jose A.
    NEURAL INFORMATION PROCESSING, PT II, 2011, 7063 : 461 - 470
  • [22] Mallows model averaging with effective model size in fragmentary data prediction
    Yuan, Chaoxia
    Fang, Fang
    Ni, Lyu
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 173
  • [23] MALLOWS MODEL AVERAGING ESTIMATOR FOR THE MIDAS MODEL WITH ALMON POLYNOMIAL WEIGHT
    Wong, Hsin-Chieh
    Tsay, Wen-Jen
    STATISTICA SINICA, 2022, 32 : 1811 - 1833
  • [24] Informative Priors for the Consensus Ranking in the Bayesian Mallows Model
    Crispino, Marta
    Antoniano-Villalobos, Isadora
    BAYESIAN ANALYSIS, 2023, 18 (02): : 391 - 414
  • [25] PerMallows: An R Package for Mallows and Generalized Mallows Models
    Irurozki, Ekhine
    Calvo, Borja
    Lozano, Jose A.
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 71 (12): : 1 - 30
  • [26] Time-varying rankings with the Bayesian Mallows model
    Asfaw, Derbachew
    Vitelli, Valeria
    Sorensen, Oystein
    Arjas, Elja
    Frigessi, Arnoldo
    STAT, 2017, 6 (01): : 14 - 30
  • [27] The wind of the mallows
    Scotellaro, Rocco Vincenzo
    FORUM ITALICUM, 2016, 50 (02) : 342 - 345
  • [28] 'MALLOWS IN CAUCASUS'
    KUBACKI, W
    SOVIET LITERATURE, 1977, (12): : 118 - 124
  • [29] Finding the second-best candidate under the Mallows model
    Liu, Xujun
    Milenkovic, Olgica
    THEORETICAL COMPUTER SCIENCE, 2022, 929 : 39 - 68
  • [30] Partition-Mallows Model and Its Inference for Rank Aggregation
    Zhu, Wanchuang
    Jiang, Yingkai
    Liu, Jun S.
    Deng, Ke
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (541) : 343 - 359