Research on a hybrid model for flood probability prediction based on time convolutional network and particle swarm optimization algorithm

被引:0
|
作者
Yu, Qiying [1 ,2 ]
Liu, Chengshuai [1 ]
Li, Runxi [1 ]
Lu, Zhenlin [2 ]
Bai, Yungang [2 ]
Li, Wenzhong [1 ]
Tian, Lu [1 ]
Shi, Chen [1 ,2 ]
Xu, Yingying [1 ]
Cao, Biao [2 ]
Zhang, Jianghui [2 ]
Hu, Caihong [1 ]
机构
[1] Zhengzhou Univ, Sch Water Conservancy & Transportat, Zhengzhou 450001, Peoples R China
[2] Xinjiang Inst Water Resources & Hydropower Res, Urumqi 830049, Xinjiang, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Flood forecasting; Machine learning; Temporal convolutional neural network; Particle swarm optimization algorithm; Bootstrap probability sampling algorithm; PSO-TCN model; Tailan River Basin; ERROR;
D O I
10.1038/s41598-024-80100-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate flood forecasting in advance is crucial for planning and implementing watershed flood prevention measures. This study developed the PSO-TCN-Bootstrap flood forecasting model for the Tailan River Basin in Xinjiang by integrating the particle swarm optimisation (PSO) algorithm, temporal convolutional network (TCN), and Bootstrap probability sampling method. Evaluated on 50 historical flood events from 1960 to 2014 using observed rainfall-runoff data, the model showed, under the same lead time conditions, a higher Nash efficiency coefficient, along with lower root mean square and relative peak errors in flood forecasting. These results highlight the PSO-TCN-Bootstrap model's superior applicability and robustness for the Tailan River Basin. However, when the lead time exceeds 5 h, the model's relative peak error remains above 20%. Future work will focus on integrating flood generation mechanisms and enhancing machine learning models' generalisability in flood forecasting. These findings provide a scientific foundation for flood management strategies in the Tailan River Basin.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm
    Li, Mingwei
    Kang, Haigui
    Zhou, Pengfei
    Hong, Weichiang
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2013, 24 (02) : 324 - 334
  • [32] A Hybrid Algorithm Based on Particle Swarm Optimization and Ant Colony Optimization Algorithm
    Lu, Junliang
    Hu, Wei
    Wang, Yonghao
    Li, Lin
    Ke, Peng
    Zhang, Kai
    SMART COMPUTING AND COMMUNICATION, SMARTCOM 2016, 2017, 10135 : 22 - 31
  • [33] Numerical solution of ruin probability of continuous time model based on optimal adaptive particle swarm optimization-triangular neural network algorithm
    Yiming Xu
    Xinyue Fan
    Yunlei Yang
    Jia Wu
    Soft Computing, 2023, 27 : 14321 - 14335
  • [34] Parameter Estimation of Software Reliability Model and Prediction Based on Hybrid Wolf Pack Algorithm and Particle Swarm Optimization
    Li Zhen
    Yang Liu
    Wang Dongsheng
    Zheng Wei
    IEEE ACCESS, 2020, 8 : 29354 - 29369
  • [35] Numerical solution of ruin probability of continuous time model based on optimal adaptive particle swarm optimization-triangular neural network algorithm
    Xu, Yiming
    Fan, Xinyue
    Yang, Yunlei
    Wu, Jia
    SOFT COMPUTING, 2023, 27 (19) : 14321 - 14335
  • [36] A Hybrid Particle Swarm Optimization Algorithm
    Qi Changxing
    Bi Yiming
    Han Huihua
    Li Yong
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 2187 - 2190
  • [37] On a hybrid particle swarm optimization algorithm
    Singh, Sharandeep
    Singh, Narinder
    Singh, S. B.
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2016, 3 (12): : 96 - 105
  • [38] Network Scheduling Model of Cloud Computing based on Particle Swarm Optimization Algorithm
    Lu, Ke
    Meng, Junxia
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2015, 8 (04): : 73 - 81
  • [39] Splicing algorithm of shredded document based on triplet network and hybrid particle swarm optimization
    Chen Z.
    Su Z.
    Fang J.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52 (02): : 22 - 28
  • [40] Application of hybrid neural particle swarm optimization algorithm for prediction of MMP
    Sayyad, Hossein
    Manshad, Abbas Khaksar
    Rostami, Habib
    FUEL, 2014, 116 : 625 - 633