Research on a hybrid model for flood probability prediction based on time convolutional network and particle swarm optimization algorithm

被引:0
|
作者
Yu, Qiying [1 ,2 ]
Liu, Chengshuai [1 ]
Li, Runxi [1 ]
Lu, Zhenlin [2 ]
Bai, Yungang [2 ]
Li, Wenzhong [1 ]
Tian, Lu [1 ]
Shi, Chen [1 ,2 ]
Xu, Yingying [1 ]
Cao, Biao [2 ]
Zhang, Jianghui [2 ]
Hu, Caihong [1 ]
机构
[1] Zhengzhou Univ, Sch Water Conservancy & Transportat, Zhengzhou 450001, Peoples R China
[2] Xinjiang Inst Water Resources & Hydropower Res, Urumqi 830049, Xinjiang, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Flood forecasting; Machine learning; Temporal convolutional neural network; Particle swarm optimization algorithm; Bootstrap probability sampling algorithm; PSO-TCN model; Tailan River Basin; ERROR;
D O I
10.1038/s41598-024-80100-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate flood forecasting in advance is crucial for planning and implementing watershed flood prevention measures. This study developed the PSO-TCN-Bootstrap flood forecasting model for the Tailan River Basin in Xinjiang by integrating the particle swarm optimisation (PSO) algorithm, temporal convolutional network (TCN), and Bootstrap probability sampling method. Evaluated on 50 historical flood events from 1960 to 2014 using observed rainfall-runoff data, the model showed, under the same lead time conditions, a higher Nash efficiency coefficient, along with lower root mean square and relative peak errors in flood forecasting. These results highlight the PSO-TCN-Bootstrap model's superior applicability and robustness for the Tailan River Basin. However, when the lead time exceeds 5 h, the model's relative peak error remains above 20%. Future work will focus on integrating flood generation mechanisms and enhancing machine learning models' generalisability in flood forecasting. These findings provide a scientific foundation for flood management strategies in the Tailan River Basin.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A Novel Hybrid Model Based on Convolutional Neural Network With Particle Swarm Optimization Algorithm for Classification of Cardiac Arrhythmias
    Banos, Fredy Santander
    Romero, Norberto Hernandez
    Mora, Juan Carlos Seck Tuoh
    Marin, Joselito Medina
    Vite, Irving Barragan
    Fuentes, Gustavo Erick Anaya
    IEEE ACCESS, 2023, 11 : 55515 - 55532
  • [2] Research on Particle Swarm Optimization Algorithm Based on Optimal Movement Probability
    Ma, Jianhong
    Zhang, Han
    He, Baofeng
    SEVENTH INTERNATIONAL CONFERENCE ON ELECTRONICS AND INFORMATION ENGINEERING, 2017, 10322
  • [3] Logistics requirement prediction by a hybrid model of particle swarm optimization algorithm and RBF neural network
    Zhao, Wenge
    Journal of Computational Information Systems, 2013, 9 (01): : 41 - 46
  • [4] Research on Milling Force Prediction Model Based on Improved Particle Swarm Optimization Algorithm
    Liu Ling
    Qi Weiwei
    Liu Tingting
    2018 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS AND CONTROL ENGINEERING (ISPECE 2018), 2019, 1187
  • [5] The improved grey model based on particle swarm optimization algorithm for time series prediction
    Li, Kewen
    Liu, Lu
    Zhai, Jiannan
    Khoshgoftaar, Taghi M.
    Li, Timing
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 55 : 285 - 291
  • [6] Compressive Strength Prediction of Rubber Concrete Based on Artificial Neural Network Model with Hybrid Particle Swarm Optimization Algorithm
    Huang, Xiao-Yu
    Wu, Ke-Yang
    Wang, Shuai
    Lu, Tong
    Lu, Ying-Fa
    Deng, Wei-Chao
    Li, Hou-Min
    MATERIALS, 2022, 15 (11)
  • [7] A Virtual Network Embedding Algorithm Based on Hybrid Particle Swarm Optimization
    Wang, Cong
    Su, Yian
    Zhou, Lixin
    Peng, Sancheng
    Yuan, Ying
    Huang, Hongtao
    SMART COMPUTING AND COMMUNICATION, SMARTCOM 2016, 2017, 10135 : 568 - 576
  • [8] A Neural Network Learning Algorithm Based on Hybrid Particle Swarm Optimization
    Luo Zaifei
    Guan Binglei
    Zhou Shiguan
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 3255 - 3259
  • [9] Study on Network Flow Prediction Model Based on Particle Swarm Optimization Algorithm and RBF Neural Network
    Bin, Zhang Yu
    Zhong, Lin Li
    Ming, Zhang Ya
    ICCSIT 2010 - 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 2, 2010, : 302 - 306
  • [10] Research on the Meteorological Prediction Algorithm Based on the CNSS and Particle Swarm Optimization
    Yang, Li
    Zhang, Meng
    Zhang, Yunhan
    COMPLEXITY, 2021, 2021