A comprehensive study on numerical homogenization of re-entrant honeycomb lattice and analytical model assessment

被引:0
|
作者
Das, Rajnandini [1 ]
Kumar, Gurunathan Saravana [1 ]
机构
[1] Indian Inst Technol Madras, Dept Engn Design, Chennai 600036, Tamil Nadu, India
关键词
Re-entrant honeycomb lattice; Homogenization; Elastic properties; Finite element method; EFFECTIVE ELASTIC PROPERTIES; FINITE-ELEMENT; TRANSVERSE-SHEAR; DEFORMATION; DESIGN;
D O I
10.1007/s10999-024-09732-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Re-entrant honeycomb lattice structures offer significant advantages, such as a high strength-to-weight ratio, superior energy absorption capabilities, and efficient material usage. However, for design optimization, the computational challenges posed by simulating extensive structures featuring lattice cells demand an exponential increase in degrees of freedom, inevitably prolonging computational time. The present work addresses some of the challenges in simulating these structures by employing numerical homogenization and investigating the effective elastic properties, aiming to reduce computational costs while maintaining accuracy. The homogenization approach is validated using experiments on lattice structures made in polymer. The study also evaluates the applicability of existing analytical models by comparing their predictions with numerical homogenization results. A comprehensive analysis considering the structural parameters, namely re-entrant angle (theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document}) and relative density (rho rel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{\text {rel}}$$\end{document}), is presented to understand the prediction accuracy of different analytical models. Both uncertainty and sensitivity analyses were conducted to quantify the influence of these structural parameters on the effective properties and to assess the variability due to probable geometric uncertainties introduced in manufacturing. Additionally, the influence of cell density on the homogenization model's accuracy is also examined. The findings reveal good agreement between the lattice simulation, the homogenized model, and the experimental result within the linear elastic limit. The study infers that amongst the analytical models, Malek's model is highly accurate for predicting E11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{11}$$\end{document}, E33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{33}$$\end{document}, and Poisson's ratio mu 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{12}$$\end{document} for higher theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document} and up to 30% rho rel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{\text {rel}}$$\end{document} but shows significant deviations for G12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{12}$$\end{document}, G23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{23}$$\end{document}, and mu 23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{23}$$\end{document}, necessitating numerical homogenization for higher accuracy beyond these ranges. The uncertainty analysis indicates that elastic moduli such as E11/Es\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{11}/E_{s}$$\end{document} and E33/Es\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{33}/E_{s}$$\end{document} exhibit the highest sensitivity to variations in strut thickness and angle, highlighting the need for precise manufacturing control to mitigate variability in effective elastic properties. The sensitivity analysis revealed that strut thickness (t) significantly influences the elastic and shear moduli, while the interaction of theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document} and t plays a crucial role in determining Poisson's ratios for the auxetic honeycomb lattice. Additionally, numerical homogenization effectively predicts the elastic properties of re-entrant honeycomb structures with higher accuracy and lower computational costs. This comprehensive analysis enhances the understanding and practical application of both analytical and numerical methods in lattice structure design.
引用
收藏
页码:181 / 207
页数:27
相关论文
共 50 条
  • [31] Design and compressive behaviors of the gradient re-entrant origami honeycomb metamaterials
    Ma, Nanfang
    Han, Sihao
    Han, Qiang
    Li, Chunlei
    THIN-WALLED STRUCTURES, 2024, 198
  • [32] A novel elliptical annular re-entrant auxetic honeycomb with enhanced stiffness
    Zhu, Difeng
    Wei, Yuchen
    Shen, Xingyu
    Yan, Ke
    Yuan, Mengqi
    Qi, Shaobo
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 262
  • [33] In-Plane Dynamic Crushing Response of Re-Entrant Trichiral Honeycomb
    Wei, Lulu
    Yu, Qiang
    Zhao, Xuan
    Zhu, Guohua
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 2320 - 2331
  • [34] Mechanical Properties of Re-Entrant Hybrid Honeycomb Structures for Morphing Wings
    Wang, Yan
    Guo, Yingjie
    Yang, Hui
    BIOMIMETICS, 2024, 9 (09)
  • [35] An analytical model for star-shaped re-entrant lattice structures with the orthotropic symmetry and negative Poisson's ratios
    Ai, L.
    Gao, X-L
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 145 : 158 - 170
  • [36] THE STUDY OF VENTRICULAR RE-ENTRANT BEAT
    YOSHIKAWA, M
    YOSHINO, J
    ENDO, M
    DEGAWA, T
    MIZUTANI, A
    SUGI, K
    ONISHI, S
    HACHISUKA, T
    ITO, H
    NINOMIYA, K
    YABUKI, S
    SEKI, K
    JAPANESE CIRCULATION JOURNAL-ENGLISH EDITION, 1980, 44 (08): : 596 - 596
  • [37] Fabrication and crushing response of graded re-entrant circular auxetic honeycomb
    Jiang, Feng
    Yang, Shu
    Zhang, Yu
    Qi, Chang
    Chen, Shang
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 242
  • [38] Hierarchical re-entrant honeycomb metamaterial for energy absorption and vibration insulation
    Ma, Nanfang
    Han, Qiang
    Han, Sihao
    Li, Chunlei
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 250
  • [39] Homogenization and equivalent in-plane properties of hexagonal and re-entrant honeycombs
    Gonella, Stefano
    Ruzzene, Massimo
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2007, VOL 10, PTS A AND B: MECHANICS OF SOLIDS AND STRUCTURES, 2008, : 1117 - 1127
  • [40] Composites with Re-Entrant Lattice: Effect of Filler on Auxetic Behaviour
    Tashkinov, Mikhail
    Tarasova, Anastasia
    Vindokurov, Ilia
    Silberschmidt, Vadim V.
    POLYMERS, 2023, 15 (20)