RW-HeCo: A random walk and network centrality based graph neural network for community detection in heterogeneous networks

被引:0
|
作者
Verma A.K. [1 ,2 ]
Jadeja M. [1 ]
Jayaswal S. [1 ]
机构
[1] Department of CSE, Malaviya National Institute of Technology, Rajasthan, Jaipur
[2] Department of CSE, Manipal University Jaipur, Rajasthan, Jaipur
关键词
Betweenness centrality (BC); Contrastive learning; Heterogeneous graphs (HG); Meta path; Random walk (RW);
D O I
10.1007/s11042-024-18823-7
中图分类号
学科分类号
摘要
Real-world networks often consist of different types of nodes, which leads to the creation of heterogeneous graphs. Most studies on heterogeneous graph neural networks follow the semi-supervised learning paradigm. The purpose of community detection in heterogeneous networks is to identify groups or communities of nodes that share similar characteristics or functions. In state-of-the-art community detection work, all meta-path-based neighbors were considered, but not all connections among meta-paths are necessary. In this paper, we propose a novel approach called RW-HeCo i.e. Random Walk and Network Centrality based GNN (Graph Neural Network) for Community Detection in Heterogeneous Networks. This approach uses a random walk and network centrality-based GNN along with co-contrastive learning. Our method is able to capture and categorize the structures more effectively and efficiently by adopting a network schema view and a meta path-based random walk. In our experiments, we evaluate the performance of RW-HeCo on four benchmark networks (ACM, AMiner, DBLP, and Freebase) and demonstrate improved classification accuracy that outperforms state-of-the-art methods. Moreover, to the best of our knowledge, the results obtained for ACM, DBLP, and Freebase datasets are the best compared to all the existing NMI (Normalized Mutual Information) and ARI (Adjusted Rand Index) values. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
引用
收藏
页码:463 / 486
页数:23
相关论文
共 50 条
  • [41] Network Change Detection Based on Random Walk in Latent Space
    Lin, Chuan-Hao
    Xu, Linchuan
    Yamanishi, Kenji
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 6136 - 6147
  • [42] Random Neural Network based Intelligent Intrusion Detection for Wireless Sensor Networks
    Saeed, Ahmed
    Ahmadinia, Ali
    Javed, Abbas
    Larijani, Hadi
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 2372 - 2376
  • [43] A Session Recommendation Model Based on Heterogeneous Graph Neural Network
    An, Zhiwei
    Tan, Yirui
    Zhang, Jinli
    Jiang, Zongli
    Li, Chen
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, KSEM 2023, 2023, 14119 : 160 - 171
  • [44] Research on Recommendation Algorithm Based on Heterogeneous Graph neural Network
    Chen Z.
    Li H.
    Du J.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2021, 48 (10): : 137 - 144
  • [45] Community detection based on community perspective and graph convolutional network
    Liu, Hongtao
    Wei, Jiahao
    Xu, Tianyi
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 231
  • [46] A collaborative filtering model based on heterogeneous graph neural network
    Yang B.
    Qiu L.
    Wu S.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2023, 63 (09): : 1339 - 1349
  • [47] Relation-Aware Heterogeneous Graph Neural Network for Fraud Detection
    Li, Enxia
    Ouyang, Jin
    Xiang, Sheng
    Qin, Lu
    Chen, Ling
    WEB AND BIG DATA, APWEB-WAIM 2024, PT III, 2024, 14963 : 240 - 255
  • [48] Enhancing Network Anomaly Detection Using Graph Neural Networks
    Marfo, William
    Tosh, Deepak K.
    Moore, Shirley V.
    2024 22ND MEDITERRANEAN COMMUNICATION AND COMPUTER NETWORKING CONFERENCE, MEDCOMNET 2024, 2024,
  • [49] Graph Neural Networks with scattering transform for network anomaly detection
    Zoubir, Abdeljalil
    Missaoui, Badr
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 150
  • [50] Using Graph Neural Networks for the Detection and Explanation of Network Intrusions
    Baahmed, Ahmed Rafik El-Mehdi
    Andresini, Giuseppina
    Robardet, Celine
    Appice, Annalisa
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT III, 2025, 2135 : 201 - 216