Enabling secure data-driven applications: an approach to personal data management using trusted execution environments

被引:0
|
作者
Carpentier, Robin [1 ]
Popa, Iulian Sandu [2 ]
Anciaux, Nicolas [3 ,4 ]
机构
[1] Macquarie Univ, Macquarie Pk, NSW 2109, Australia
[2] Univ Paris Saclay, Univ Versailles St Q En Yvelines, DAVID Lab, 45 Ave Etats Unis, F-78000 Versailles, France
[3] Inria, PETSCRAFT Project Team, 1 Rue Honore Estienne Orves, F-91120 Palaiseau, France
[4] INSA CVL, LIFO Lab, 88 Bd Lahitolle, F-18000 Bourges, France
关键词
Personal data management systems; User-defined functions; Untrusted code; Information leakage; Trusted execution environments;
D O I
10.1007/s10619-024-07449-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In a rapidly evolving landscape, Personal Data Management Systems (PDMSs) provide individuals with the necessary tools to collect, manage and share their personal data. At the same time, the emergence of Trusted Execution Environments (TEEs) offers a way to address the critical challenge of securing user data while fostering a thriving ecosystem of data-driven applications. In this paper, we employ a PDMS architecture leveraging TEEs as a fundamental security foundation. Unlike conventional approaches, our architecture enables extensible data processing by integrating user-defined functions (UDFs), even from untrusted sources. Our focus is on UDFs involving potentially large sets of personal database objects, with a novel proposal to mitigate the potential risk of data leakage. We introduce security building blocks to impose an upper bound on data leakage and investigate the efficiency of several execution strategies considering different scenarios relevant to personal data management. We validate the proposed solutions through an implementation using Intel SGX on real datasets, demonstrating its effectiveness in achieving secure and efficient computations in diverse environments.
引用
收藏
页数:51
相关论文
共 50 条
  • [21] A data-driven approach to patient blood management
    Cohn, Claudia S.
    Welbig, Julie
    Bowman, Robert
    Kammann, Susan
    Frey, Katherine
    Zantek, Nicole
    TRANSFUSION, 2014, 54 (02) : 316 - 322
  • [22] A Framework for Privacy-Preserving Genomic Data Analysis Using Trusted Execution Environments
    Asvadishirehjini, Aref
    Kantarcioglu, Murat
    Malin, Bradley
    2020 SECOND IEEE INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS AND APPLICATIONS (TPS-ISA 2020), 2020, : 138 - 147
  • [23] Assessment of Personal Values for Data-Driven Human Resource Management
    Kimura T.
    Data Science Journal, 2023, 22
  • [24] Enabling Comprehensive Data-Driven System Management for Large Computational Facilities
    Browne, James C.
    DeLeon, Robert L.
    Lu, Charng-Da
    Jones, Matthew D.
    Gallo, Steven M.
    Ghadersohi, Amin
    Patra, Abani K.
    Barth, William L.
    Hammond, John
    Furlani, Thomas R.
    McLay, Robert T.
    2013 INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC), 2013,
  • [25] Data-driven execution of fast multipole methods
    Ltaief, Hatem
    Yokota, Rio
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2014, 26 (11): : 1935 - 1946
  • [26] Data-Driven Thread Execution on Heterogeneous Processors
    Arandi, Samer
    Matheou, George
    Kyriacou, Costas
    Evripidou, Paraskevas
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2018, 46 (02) : 198 - 224
  • [27] Data-Driven Thread Execution on Heterogeneous Processors
    Samer Arandi
    George Matheou
    Costas Kyriacou
    Paraskevas Evripidou
    International Journal of Parallel Programming, 2018, 46 : 198 - 224
  • [28] A Data-Driven Deployment Approach for Persistent Monitoring in Aquatic Environments
    Alam, Tauhidul
    Reis, Gregory Murad
    Bobadilla, Leonardo
    Smith, Ryan N.
    2018 SECOND IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC), 2018, : 147 - 154
  • [29] A scalable, secure, and interoperable platform for deep data-driven health management
    Bahmani, Amir
    Alavi, Arash
    Buergel, Thore
    Upadhyayula, Sushil
    Wang, Qiwen
    Ananthakrishnan, Srinath Krishna
    Alavi, Amir
    Celis, Diego
    Gillespie, Dan
    Young, Gregory
    Xing, Ziye
    Nguyen, Minh Hoang Huynh
    Haque, Audrey
    Mathur, Ankit
    Payne, Josh
    Mazaheri, Ghazal
    Li, Jason Kenichi
    Kotipalli, Pramod
    Liao, Lisa
    Bhasin, Rajat
    Cha, Kexin
    Rolnik, Benjamin
    Celli, Alessandra
    Dagan-Rosenfeld, Orit
    Higgs, Emily
    Zhou, Wenyu
    Berry, Camille Lauren
    Van Winkle, Katherine Grace
    Contrepois, Kevin
    Ray, Utsab
    Bettinger, Keith
    Datta, Somalee
    Li, Xiao
    Snyder, Michael P.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [30] A scalable, secure, and interoperable platform for deep data-driven health management
    Amir Bahmani
    Arash Alavi
    Thore Buergel
    Sushil Upadhyayula
    Qiwen Wang
    Srinath Krishna Ananthakrishnan
    Amir Alavi
    Diego Celis
    Dan Gillespie
    Gregory Young
    Ziye Xing
    Minh Hoang Huynh Nguyen
    Audrey Haque
    Ankit Mathur
    Josh Payne
    Ghazal Mazaheri
    Jason Kenichi Li
    Pramod Kotipalli
    Lisa Liao
    Rajat Bhasin
    Kexin Cha
    Benjamin Rolnik
    Alessandra Celli
    Orit Dagan-Rosenfeld
    Emily Higgs
    Wenyu Zhou
    Camille Lauren Berry
    Katherine Grace Van Winkle
    Kévin Contrepois
    Utsab Ray
    Keith Bettinger
    Somalee Datta
    Xiao Li
    Michael P. Snyder
    Nature Communications, 12