Global Well-posedness of the Nonhomogeneous Initial Boundary Value Problem for the Hirota Equation Posed in a Finite Domain

被引:0
|
作者
Xu, Mengtao [1 ]
Guo, Chunxiao [1 ]
Guo, Boling [2 ]
Yang, Xin-guang [3 ]
机构
[1] China Univ Min & Technol Beijing, Dept Math, Beijing 100083, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[3] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2025年 / 91卷 / 02期
基金
中国国家自然科学基金;
关键词
Hirota equation; Nonhomogeneous boundary conditions; Well-posedness; KORTEWEG-DE-VRIES; 5TH-ORDER KDV EQUATION; CAUCHY-PROBLEM; KAWAHARA EQUATION; SOBOLEV SPACES;
D O I
10.1007/s00245-025-10226-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a system described by a type of initial and boundary value problem of the Hirota equation with nonhomogeneous boundary conditions posed on a bounded interval. Firstly, we prove the local well-posedness of the system in the space Hs(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>s(0,1)$$\end{document} by using an explicit solution formula and contraction mapping principle for any s >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 1$$\end{document}. Secondly, we obtain the global well-posedness in H1(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1(0,1)$$\end{document} and H2(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2(0,1)$$\end{document} by the norm estimation. Especially, the main difficulty is that the characteristic equation corresponding to Hirota equation needs to be solved by construction and that nonlinear terms are taken into consideration. In addition, the norm estimate for global well-posedness of solution in H1(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1(0,1)$$\end{document} and H2(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2(0,1)$$\end{document} are complicated.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Global well-posedness for nonhomogeneous magnetic Benard system
    Zhong, Xin
    APPLICABLE ANALYSIS, 2024, 103 (11) : 1922 - 1943
  • [42] Well-posedness of the time-varying linear electromagnetic initial-boundary value problem
    Xie Li
    Lei Yin-Zhao
    CHINESE PHYSICS, 2007, 16 (09): : 2523 - 2536
  • [43] Well-posedness of an initial value problem for fractional diffusion equation with Caputo-Fabrizio derivative
    Nguyen Huy Tuan
    Zhou, Yong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 375
  • [44] Homogeneous initial-boundary value problem of the Rosenau equation posed on a finite interval
    Zhou, Deqin
    Mu, Chunlai
    APPLIED MATHEMATICS LETTERS, 2016, 57 : 7 - 12
  • [45] NECESSARY AND SUFFICIENT CONDITIONS FOR THE WELL-POSEDNESS OF A BOUNDARY VALUE PROBLEM FOR A LINEAR LOADED HYPERBOLIC EQUATION
    Kabdrakhova, S. S.
    Stanzhytsky, O. N.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2021, 112 (04): : 3 - 12
  • [46] A NONHOMOGENEOUS BOUNDARY-VALUE PROBLEM FOR THE MODIFIED ANISOTROPIC HEISENBERG SPIN CHAIN POSED ON A FINITE DOMAIN
    Pei, Yitong
    Bian, Shasha
    Guo, Boling
    Liu, Wuming
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (01): : 470 - 485
  • [47] Global well-posedness of the KP-I initial-value problem in the energy space
    A.D. Ionescu
    C.E. Kenig
    D. Tataru
    Inventiones mathematicae, 2008, 173 : 265 - 304
  • [48] Global Well-Posedness of the Boltzmann Equation with Large Amplitude Initial Data
    Renjun Duan
    Feimin Huang
    Yong Wang
    Tong Yang
    Archive for Rational Mechanics and Analysis, 2017, 225 : 375 - 424
  • [49] WELL-POSEDNESS OF A CLASS OF NON-HOMOGENEOUS BOUNDARY VALUE PROBLEMS OF THE KORTEWEG-DE VRIES EQUATION ON A FINITE DOMAIN
    Kramer, Eugene
    Rivas, Ivonne
    Zhang, Bing-Yu
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (02) : 358 - 384
  • [50] Global well-posedness of the KP-I initial-value problem in the energy space
    Ionescu, A. D.
    Kenig, C. E.
    Tataru, D.
    INVENTIONES MATHEMATICAE, 2008, 173 (02) : 265 - 304