Global Well-posedness of the Nonhomogeneous Initial Boundary Value Problem for the Hirota Equation Posed in a Finite Domain

被引:0
|
作者
Xu, Mengtao [1 ]
Guo, Chunxiao [1 ]
Guo, Boling [2 ]
Yang, Xin-guang [3 ]
机构
[1] China Univ Min & Technol Beijing, Dept Math, Beijing 100083, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[3] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2025年 / 91卷 / 02期
基金
中国国家自然科学基金;
关键词
Hirota equation; Nonhomogeneous boundary conditions; Well-posedness; KORTEWEG-DE-VRIES; 5TH-ORDER KDV EQUATION; CAUCHY-PROBLEM; KAWAHARA EQUATION; SOBOLEV SPACES;
D O I
10.1007/s00245-025-10226-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a system described by a type of initial and boundary value problem of the Hirota equation with nonhomogeneous boundary conditions posed on a bounded interval. Firstly, we prove the local well-posedness of the system in the space Hs(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>s(0,1)$$\end{document} by using an explicit solution formula and contraction mapping principle for any s >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 1$$\end{document}. Secondly, we obtain the global well-posedness in H1(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1(0,1)$$\end{document} and H2(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2(0,1)$$\end{document} by the norm estimation. Especially, the main difficulty is that the characteristic equation corresponding to Hirota equation needs to be solved by construction and that nonlinear terms are taken into consideration. In addition, the norm estimate for global well-posedness of solution in H1(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1(0,1)$$\end{document} and H2(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2(0,1)$$\end{document} are complicated.
引用
收藏
页数:33
相关论文
共 50 条