Template-based universal adversarial attack for synthetic aperture radar automatic target recognition network

被引:0
|
作者
Liu, Wei [1 ]
Wan, Xuanshen [1 ]
Niu, Chaoyang [1 ]
Lu, Wanjie [1 ]
Li, Yuanli [1 ]
机构
[1] PLA Informat Engn Univ, Inst Data & Target Engn, Zhengzhou, Peoples R China
来源
IET RADAR SONAR AND NAVIGATION | 2025年 / 19卷 / 01期
基金
中国国家自然科学基金;
关键词
artificial intelligence; image recognition; radar target recognition; synthetic aperture radar; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1049/rsn2.12691
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing synthetic aperture radar (SAR) adversarial attack algorithms primarily focus on the digital image domain, and constructing adversarial examples in real-world scenarios presents significant and challenging hurdles. This study proposes the template-based universal adversarial attack (TUAA) algorithm. Initially, a SAR interference template generator module is constructed to derive a universal adversarial perturbation in the image domain. The designed loss function guides the parameter updating of the generator, thereby improving the attack effectiveness and perturbation concealment. Subsequently, a SAR jamming signal generator module is developed, which swiftly generates the interference signal using the range convolutional and azimuth multiplication modulation jamming method. Consequently, the victim model can be effectively targeted by merely transmitting the jamming signal to the SAR receiver. Experimental results show that TUAA reduces the recognition rate of four typical DNN models to less than 15% under acceptable time costs and image deformation.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Automatic Target Recognition using Multipolar Bistatic Synthetic Aperture Radar Images
    Mishra, Amit Kumar
    Bernard, Mulgrew
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2010, 46 (04) : 1906 - 1920
  • [22] (Automatic) target detection in synthetic aperture radar imagery via terrain recognition
    Paget, R
    Homer, J
    Crisp, D
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2001, : 54 - 57
  • [23] Synthetic aperture radar automatic target recognition with three strategies of learning and representation
    Zhao, Q
    Principe, JC
    Brennan, VL
    Xu, DX
    Wang, Z
    OPTICAL ENGINEERING, 2000, 39 (05) : 1230 - 1244
  • [24] A Multiple Radar Approach for Automatic Target Recognition of Aircraft using Inverse Synthetic Aperture Radar
    Pena-Caballero, Carlos
    Cantu, Elifaleth
    Rodriguez, Jesus
    Gonzales, Adolfo
    Castellanos, Osvaldo
    Cantu, Angel
    Strait, Megan
    Son, Jae
    Kim, Dongchul
    2018 1ST INTERNATIONAL CONFERENCE ON DATA INTELLIGENCE AND SECURITY (ICDIS 2018), 2018, : 24 - 31
  • [25] SAR Automatic Target Recognition Using Maximum Likelihood Template-based Classifiers
    Saghri, John A.
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXI, 2008, 7073
  • [26] Target recognition for synthetic aperture radar imagery based on convolutional neural network feature fusion
    Kechagias-Stamatis, Odysseas
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (04)
  • [27] Capsule Broad Learning System Network for Robust Synthetic Aperture Radar Automatic Target Recognition with Small Samples
    Yu, Cuilin
    Zhai, Yikui
    Huang, Haifeng
    Wang, Qingsong
    Zhou, Wenlve
    REMOTE SENSING, 2024, 16 (09)
  • [28] Black-Box Universal Adversarial Attack for DNN-Based Models of SAR Automatic Target Recognition
    Wan, Xuanshen
    Liu, Wei
    Niu, Chaoyang
    Lu, Wanjie
    Du, Meng
    Li, Yuanli
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 8673 - 8696
  • [29] The evaluation of synthetic aperture radar image segmentation algorithms in the context of automatic target recognition
    Xue, KF
    Power, GJ
    Gregga, JB
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXV, 2002, 4790 : 21 - 32
  • [30] Incremental learning using feature labels for synthetic aperture radar automatic target recognition
    Hu, Chao
    Hao, Ming
    Wang, Wenying
    Yang, Yong
    Wu, Daoqing
    IET RADAR SONAR AND NAVIGATION, 2022, 16 (11): : 1872 - 1880