A survey of recent machine learning techniques for stock prediction methodologies

被引:0
|
作者
Vijay Kumar Vishwakarma [1 ]
Narayan P. Bhosale [1 ]
机构
[1] Indira Gandhi National Tribal University (A Central University),Department of Computer Science
关键词
Adj close; Long short-term memory; Machine learning; Stock prediction; Support vector machine;
D O I
10.1007/s00521-024-10867-y
中图分类号
学科分类号
摘要
The prime purpose of the research is to investigate stock price prediction techniques and their shortcomings concerning particular characteristics and performance measures. The research uses performance metric analysis, dataset analysis, and bibliographic analysis to determine the current state of recently published research on financial market prediction. The research examines how well machine learning models predict stock market performance, emphasizing how accuracy, precision, and recall are often used as performance measures. The researchers thoroughly analyzed 24 publications, detailing the data elements that were employed, such as historical datasets and technical indicators, and criticized related studies for frequently omitting the adjusted closing price. The research indicates that since Adj Close captures closing opinions from important market participants, it is essential for precise stock prediction. This research opens the door for further research into feature selection and how it affects prediction accuracy by illuminating how these machine learning models behave when other characteristics are added. Previous research has shown that machine learning methods such as long short-term memory and support vector machines are often used for stock price prediction with some data optimization. The performance metrics that were employed to assess the performance were also examined. The researchers have reported that rather than being regression-based, the most often utilized metrics are classification-based. Performance is also measured via other metrics, such as the Sharpe ratio and accumulated error. The findings will assist financial market researchers in developing creative concepts and selecting the most useful criteria from the data that have been provided.
引用
收藏
页码:1951 / 1972
页数:21
相关论文
共 50 条
  • [41] MACHINE LEARNING - A SURVEY OF CURRENT TECHNIQUES
    MCDONALD, C
    ARTIFICIAL INTELLIGENCE REVIEW, 1989, 3 (04) : 243 - 280
  • [42] A Survey of Machine Learning and Deep Learning Techniques for Lung Cancer Prediction in IoT and Cloud Platform
    Tejaswi, Gottumukkala Thanmaya
    Srinivasu, Nulaka
    Gottumukkala, Pardha Saradhi Varma
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2025,
  • [43] Advancing Financial Forecasts: Stock Price Prediction Based on Time Series and Machine Learning Techniques
    Yang, Cheng-Ying
    Hwang, Min-Shiang
    Tseng, Yu-Wei
    Yang, Chou-Chen
    Shen, Victor R. L.
    APPLIED ARTIFICIAL INTELLIGENCE, 2024, 38 (01)
  • [44] Stock Market Predictability Using Machine Learning Techniques
    Wu, Jiuye
    Proceedings - 2022 International Conference on Machine Learning and Intelligent Systems Engineering, MLISE 2022, 2022, : 343 - 349
  • [45] Stock Price Forecasting Using Machine Learning Techniques
    Ustali, Nesrin Koc
    Tosun, Nedret
    Tosun, Omur
    ESKISEHIR OSMANGAZI UNIVERSITESI IIBF DERGISI-ESKISEHIR OSMANGAZI UNIVERSITY JOURNAL OF ECONOMICS AND ADMINISTRATIVE SCIENCES, 2021, 16 (01): : 1 - 16
  • [46] Predicting Stock Prices Using Machine Learning Techniques
    Karthikeyan, C.
    Nisha, Sahaya Anselin A.
    Anandan, P.
    Prabha, R.
    Mohan, D.
    Babu, Vijendra D.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), 2021, : 1184 - 1188
  • [47] Stock Price Forecasting by Hybrid Machine Learning Techniques
    Tsai, C-F
    Wang, S-P
    IMECS 2009: INTERNATIONAL MULTI-CONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2009, : 755 - +
  • [48] Recent Advances in Machine Learning Techniques and Applications
    Sidorov, Grigori
    Koeppen, Mario
    Cruz-Cortes, Nareli
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2011, 2 (03) : 123 - 124
  • [49] ACPScanner: Prediction of Anticancer Peptides by Integrated Machine Learning Methodologies
    Zhong, Guolun
    Deng, Lei
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (03) : 1092 - 1104
  • [50] A Survey of Machine Learning Techniques for Video Quality Prediction from Quality of Delivery Metrics
    Izima, Obinna
    Frein, Ruairi
    Malik, Ali
    ELECTRONICS, 2021, 10 (22)