On the blow-up profile of Keller–Segel–Patlak systemOn the blow-up profile of Keller–Segel–Patlak systemX. Bai, M. Zhou

被引:0
|
作者
Xueli Bai [1 ]
Maolin Zhou [2 ]
机构
[1] Northwestern Polytechnical University,School of Mathematics and Statistics
[2] Research Institute of Northwestern Polytechnical University in Shenzhen,Chern Institute of Mathematics and LPMC
[3] Nankai University,undefined
关键词
92C17; 35B40; 35B44; 35K40;
D O I
10.1007/s00208-025-03102-z
中图分类号
学科分类号
摘要
In this paper, we obtain the sharp estimate on the asymptotic behaviors of blow-up profiles for Keller–Segel–Patlak system in the space with dimensions N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}: 0.1ut=Δu-∇·(u∇v),x∈RN,t∈(0,T),0=Δv+u,x∈RN,t∈(0,T),u(x,0)=u0(x),x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} u_t = \Delta u - \nabla \cdot (u\nabla v), & x\in \mathbb {R}^N, \ t\in (0,T), \\ 0 = \Delta v+u, & x\in \mathbb {R}^N, \ t\in (0,T), \\ u(x,0)=u_0(x), & x\in \mathbb {R}^N, \end{array} \right. \end{aligned}$$\end{document}which solves an open problem proposed by Souplet and Winkler in [41]. To establish this result, we develop the zero number argument for nonlinear equations with unbounded coefficients and construct a family of auxiliary backward self-similar solutions through nontrivial ODE analysis.
引用
收藏
页码:313 / 337
页数:24
相关论文
共 50 条