In this paper, we obtain the sharp estimate on the asymptotic behaviors of blow-up profiles for Keller–Segel–Patlak system in the space with dimensions N≥3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N\ge 3$$\end{document}: 0.1ut=Δu-∇·(u∇v),x∈RN,t∈(0,T),0=Δv+u,x∈RN,t∈(0,T),u(x,0)=u0(x),x∈RN,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} u_t = \Delta u - \nabla \cdot (u\nabla v), & x\in \mathbb {R}^N, \ t\in (0,T), \\ 0 = \Delta v+u, & x\in \mathbb {R}^N, \ t\in (0,T), \\ u(x,0)=u_0(x), & x\in \mathbb {R}^N, \end{array} \right. \end{aligned}$$\end{document}which solves an open problem proposed by Souplet and Winkler in [41]. To establish this result, we develop the zero number argument for nonlinear equations with unbounded coefficients and construct a family of auxiliary backward self-similar solutions through nontrivial ODE analysis.