Extended Total Graph Associated with Finite Commutative Rings

被引:0
|
作者
Altaf, Aaqib [1 ]
Pirzada, S. [1 ]
Alghamdi, Ahmad M. [2 ]
Almotairi, Eman S. [3 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar, Kashmir, India
[2] Umm Al Qura Univ, Fac Sci Appl, Dept Math, Mecca, Saudi Arabia
[3] Qassim Univ, Coll Sci, Dept Math, Buraydah, Saudi Arabia
关键词
ZERO-DIVISOR GRAPH;
D O I
10.1007/s11253-024-02361-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a commutative ring R with nonzero identity 1 not equal 0, by Z(R) we denote the set of zero divisors. The total graph of R denoted by T Gamma(R) is a simple graph in which all elements of R are vertices and any two distinct vertices x and y are adjacent if and only if x+y is an element of Z(R). In this paper, we define an extension of the total graph denoted by T(Gamma e(R)) with vertex set Z(R) in which two distinct vertices x and y are adjacent if and only if x + y is an element of Z*(R), where Z* (R) is the set of nonzero zero divisors of R. Our main aim is to characterize the finite commutative rings whose T(Gamma e(R)) has clique numbers 1, 2, and 3. Moreover, we characterize finite commutative nonlocal rings R for which the corresponding graph T(Gamma e(R)) has the clique number 4.
引用
收藏
页码:889 / 902
页数:14
相关论文
共 50 条
  • [21] Finite commutative chain rings
    Hou, XD
    FINITE FIELDS AND THEIR APPLICATIONS, 2001, 7 (03) : 382 - 396
  • [22] COMMUTATIVE RINGS OF FINITE RANK
    GILMER, R
    DUKE MATHEMATICAL JOURNAL, 1972, 39 (02) : 381 - &
  • [23] Some Graph Parameters of the Zero-divisor Graphs of Finite Commutative Rings
    Movahedi, F.
    Akhbari, M. H.
    JOURNAL OF MATHEMATICAL EXTENSION, 2023, 17 (03)
  • [24] On the Intersection Graph of Ideals of Commutative Rings
    Nikmehr, M. J.
    Nikandish, R.
    UTILITAS MATHEMATICA, 2017, 104 : 307 - 314
  • [25] On the genus of the essential graph of commutative rings
    Selvakumar, K.
    Subajini, M.
    Nikmehr, M. J.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 74 : 74 - 85
  • [26] ON THE GRAPH OF MODULES OVER COMMUTATIVE RINGS
    Ansari-Toroghy, H.
    Habibi, S. H.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (03) : 729 - 747
  • [27] THE INDEPENDENCE AND INDEPENDENT DOMINATING NUMBERS OF THE TOTAL GRAPH OF A FINITE COMMUTATIVE RING
    Abughazaleh, Baha'
    Abughneim, Omar AbedRabbu
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (04): : 969 - 975
  • [28] The total graph of a commutative ring
    Anderson, David F.
    Badawi, Ayman
    JOURNAL OF ALGEBRA, 2008, 320 (07) : 2706 - 2719
  • [29] THE TOTAL GRAPH OF A COMMUTATIVE SEMIRING
    Atani, Shahabaddin Ebrahimi
    Saraei, Fatemeh Esmaeili Khalil
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2013, 21 (02): : 21 - 33
  • [30] The total graph and regular graph of a commutative ring
    Akbari, S.
    Kiani, D.
    Mohammadi, F.
    Moradi, S.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (12) : 2224 - 2228