A parallel large-scale multiobjective evolutionary algorithm based on two-space decomposition

被引:0
|
作者
Yin, Feng [1 ]
Cao, Bin [1 ]
机构
[1] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin 300401, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Multiobjective optimization; Large-scale multiobjective optimization; Evolutionary algorithm; Parallel computing; Two-space decomposition; OPTIMIZATION PROBLEMS; GENERATION; FRAMEWORK;
D O I
10.1007/s40747-025-01835-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decomposition is an effective and popular strategy used by evolutionary algorithms to solve multiobjective optimization problems (MOPs). It can reduce the difficulty of directly solving MOPs, increase the diversity of the obtained solutions, and facilitate parallel computing. However, with the increase of the number of decision variables, the performance of multiobjective evolutionary algorithms (MOEAs) often deteriorates sharply. The advantages of the decomposition strategy are not fully exploited when solving such large-scale MOPs (LSMOPs). To this end, this paper proposes a parallel MOEA based on two-space decomposition (TSD) to solve LSMOPs. The main idea of the algorithm is to decompose the objective space and decision space into multiple subspaces, each of which is expected to contain some complete Pareto-optimal solutions, and then use multiple populations to conduct parallel searches in these subspaces. Specifically, the objective space decomposition approach adopts the traditional reference vector-based method, whereas the decision space decomposition approach adopts the proposed method based on a diversity design subspace (DDS). The algorithm uses a message passing interface (MPI) to implement its parallel environment. The experimental results demonstrate the effectiveness of the proposed DDS-based method. Compared with the state-of-the-art MOEAs in solving various benchmark and real-world problems, the proposed algorithm exhibits advantages in terms of general performance and computational efficiency.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] An efficient evolutionary algorithm based on deep reinforcement learning for large-scale sparse multiobjective optimization
    Mengqi Gao
    Xiang Feng
    Huiqun Yu
    Xiuquan Li
    Applied Intelligence, 2023, 53 : 21116 - 21139
  • [22] A Pattern Mining-Based Evolutionary Algorithm for Large-Scale Sparse Multiobjective Optimization Problems
    Tian, Ye
    Lu, Chang
    Zhang, Xingyi
    Cheng, Fan
    Jin, Yaochu
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 6784 - 6797
  • [23] Dynamic matrix-based evolutionary algorithm for large-scale sparse multiobjective optimization problems
    Qiu, Feiyue
    Hu, Huizhen
    Ren, Jin
    Wang, Liping
    Pan, Xiaotian
    Qiu, Qicang
    MEMETIC COMPUTING, 2023, 15 (03) : 301 - 317
  • [24] An efficient evolutionary algorithm based on deep reinforcement learning for large-scale sparse multiobjective optimization
    Gao, Mengqi
    Feng, Xiang
    Yu, Huiqun
    Li, Xiuquan
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21116 - 21139
  • [25] An adjoint feature-selection-based evolutionary algorithm for sparse large-scale multiobjective optimization
    Zhang, Panpan
    Yin, Hang
    Tian, Ye
    Zhang, Xingyi
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (02)
  • [26] Evolutionary Multitasking for Large-Scale Multiobjective Optimization
    Liu, Songbai
    Lin, Qiuzhen
    Feng, Liang
    Wong, Ka-Chun
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (04) : 863 - 877
  • [27] Dynamic matrix-based evolutionary algorithm for large-scale sparse multiobjective optimization problems
    Feiyue Qiu
    Huizhen Hu
    Jin Ren
    Liping Wang
    Xiaotian Pan
    Qicang Qiu
    Memetic Computing, 2023, 15 : 301 - 317
  • [28] A space sampling based large-scale many-objective evolutionary algorithm
    Gao, Xiaoxin
    He, Fazhi
    Duan, Yansong
    Ye, Chuanlong
    Bai, Junwei
    Zhang, Chen
    INFORMATION SCIENCES, 2024, 679
  • [29] Adaptive multiobjective evolutionary algorithm for large-scale transformer ratio error estimation
    Huang, Changwu
    Li, Lianghao
    He, Cheng
    Cheng, Ran
    Yao, Xin
    MEMETIC COMPUTING, 2022, 14 (02) : 237 - 251
  • [30] A Multipopulation Evolutionary Algorithm for Solving Large-Scale Multimodal Multiobjective Optimization Problems
    Tian, Ye
    Liu, Ruchen
    Zhang, Xingyi
    Ma, Haiping
    Tan, Kay Chen
    Jin, Yaochu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (03) : 405 - 418