Atomic-level Cu active sites enable energy-efficient CO2 electroreduction to multicarbon products in strong acid

被引:2
|
作者
Fan, Lizhou [1 ,2 ]
Li, Feng [3 ]
Liu, Tianqi [2 ]
Huang, Jianan Erick [1 ]
Miao, Rui Kai [3 ]
Yan, Yu [1 ]
Feng, Shihui [4 ]
Tai, Cheuk-Wai [4 ]
Hung, Sung-Fu [5 ,6 ]
Tsai, Hsin-Jung [5 ,6 ]
Chen, Meng-Cheng [5 ,6 ]
Bai, Yang [1 ]
Kim, Dongha [1 ]
Park, Sungjin [1 ]
Papangelakis, Panos [3 ]
Wu, Chengqian [3 ]
Shayesteh Zeraati, Ali [3 ]
Dorakhan, Roham [1 ]
Sun, Licheng [2 ]
Sinton, David [3 ]
Sargent, Edward [1 ,7 ,8 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
[2] KTH Royal Inst Technol, Dept Chem, Stockholm, Sweden
[3] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON, Canada
[4] Stockholm Univ, Dept Mat & Environm Chem, Arrhenius Lab, Stockholm, Sweden
[5] Natl Yang Ming Chiao Tung Univ, Dept Appl Chem, Hsinchu, Taiwan
[6] Natl Yang Ming Chiao Tung Univ, Ctr Emergent Funct Matter Sci, Hsinchu, Taiwan
[7] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[8] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
来源
NATURE SYNTHESIS | 2025年 / 4卷 / 02期
基金
加拿大自然科学与工程研究理事会; 瑞典研究理事会; 加拿大创新基金会;
关键词
REDUCTION; CATALYST; SELECTIVITY; DESIGN;
D O I
10.1038/s44160-024-00689-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical CO2 reduction provides a promising strategy to synthesize C2+ compounds with reduced carbon intensity; however, high overall energy consumption restricts practical implementation. Using acidic media enables high CO2 utilization and low liquid product crossover, but to date has suffered low C2+ product selectivity. Here we hypothesize that adjacent pairs of atomic-copper active sites may favour C-C coupling, thus facilitating C2+ product formation. We construct tandem electrocatalysts with two distinct classes of active sites, the first for CO2 to CO, and the second, a dual-atomic-site catalyst, for CO to C2+. This leads to an ethanol Faradaic efficiency of 46% and a C2+ product Faradaic efficiency of 91% at 150 mA cm-2 in an acidic CO2 reduction reaction. We document a CO2 single-pass utilization of 78% and an energy efficiency of 30% towards C2+ products; an ethanol crossover rate of 5%; and an ethanol product concentration of 4.5%, resulting in an exceptionally low projected energy cost of 249 GJ t-1 for the electrosynthesis of ethanol via the CO2 reduction reaction. Tandem electrocatalysts are developed for acidic CO2 electroreduction. The catalyst contains planar-copper for CO2 reduction to CO, and a dual-copper-active-site layer for CO reduction to C2+ products. An ethanol Faradaic efficiency of 46% and a C2+ Faradaic efficiency of 91% are achieved in acidic electrolyte at 150 mA cm-2.
引用
收藏
页码:262 / 270
页数:9
相关论文
共 50 条
  • [21] In Situ Phase Transformation-Enabled Metal-Organic Frameworks for Efficient CO2 Electroreduction to Multicarbon Products in Strong Acidic Media
    Yu, Jinli
    Xiao, Juan
    Guo, Liang
    Xie, Zezhong
    Wang, Kun
    Wang, Yunhao
    Hao, Fengkun
    Ma, Yangbo
    Zhou, Jingwen
    Lu, Pengyi
    Wang, Guozhi
    Meng, Xiang
    Zhu, Zonglong
    Li, Qiang
    Ling, Chongyi
    Sun, Jingying
    Wang, Yi
    Song, Shuqin
    Fan, Zhanxi
    ACS NANO, 2024, : 33602 - 33613
  • [22] Efficient CO2 Electroreduction to Multicarbon Products at CuSiO3/CuO Derived Interfaces in Ordered Pores
    Li, Qun
    Wu, Jiabin
    Lv, Lei
    Zheng, Lirong
    Zheng, Qiang
    Li, Siyang
    Yang, Caoyu
    Long, Chang
    Chen, Sheng
    Tang, Zhiyong
    ADVANCED MATERIALS, 2024, 36 (22)
  • [23] A 2D Porous Cu3N Catalyst for Efficient CO Electroreduction to Multicarbon Products at an Ampere Level Current Density
    Cheng, Liming
    He, Dayin
    Ma, Xianhui
    Deng, Hongfan
    Ruan, Yaner
    Sun, Rongbo
    Tian, Lin
    Zhou, Huang
    Chen, Jian
    Wang, Xinqiang
    Pan, Hongge
    Guo, Wenxin
    Wu, Yuen
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (45)
  • [24] Promoting Cu-catalysed CO2 electroreduction to multicarbon products by tuning the activity of H2O
    Zhang, Hao
    Gao, Jiaxin
    Raciti, David
    Hall, Anthony Shoji
    NATURE CATALYSIS, 2023, 6 (09) : 807 - 817
  • [25] Asymmetric Cu Sites for Enhanced CO2 Electroreduction to C2+ Products
    Guo, Weiwei
    Tan, Xingxing
    Jia, Shunhan
    Liu, Shoujie
    Song, Xinning
    Ma, Xiaodong
    Wu, Limin
    Zheng, Lirong
    Sun, Xiaofu
    Han, Buxing
    CCS CHEMISTRY, 2024, 6 (05): : 1231 - 1239
  • [26] Size effects and active sites of Cu nanoparticle catalysts for CO2 electroreduction
    Liu, Shangguo
    Huang, Shiping
    APPLIED SURFACE SCIENCE, 2019, 475 : 20 - 27
  • [27] Key intermediates and Cu active sites for CO2 electroreduction to ethylene and ethanol
    Zhan, Chao
    Dattila, Federico
    Rettenmaier, Clara
    Herzog, Antonia
    Herran, Matias
    Wagner, Timon
    Scholten, Fabian
    Bergmann, Arno
    Lopez, Nuria
    Roldan Cuenya, Beatriz
    NATURE ENERGY, 2024, 9 (12): : 1485 - 1496
  • [28] Size-Dependent Activity and Selectivity of Atomic-Level Copper Nanoclusters during CO/CO2 Electroreduction
    Rong, Weifeng
    Zou, Haiyuan
    Zang, Wenjie
    Xi, Shibo
    Wei, Shuting
    Long, Baihua
    Hu, Junhui
    Ji, Yongfei
    Duan, Lele
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (01) : 466 - 472
  • [29] Acid-Stable Cu Cluster Precatalysts Enable High Energy and Carbon Efficiency in CO2 Electroreduction
    Kim, Dongha
    Park, Sungjin
    Lee, Junwoo
    Chen, Yiqing
    Li, Feng
    Kim, Jiheon
    Bai, Yang
    Huang, Jianan Erick
    Liu, Shijie
    Jung, Eui Dae
    Lee, Byoung-Hoon
    Papangelakis, Panagiotis
    Ni, Weiyan
    Alkayyali, Tartela
    Miao, Rui Kai
    Li, Peihao
    Liang, Yongxiang
    Zeraati, Ali Shayesteh
    Dorakhan, Roham
    Meira, Debora Motta
    Chen, Yanna
    Sinton, David
    Zhong, Mingjiang
    Sargent, Edward H.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (40) : 27701 - 27712
  • [30] Atomically Defined Undercoordinated Active Sites for Highly Efficient CO2 Electroreduction
    Zheng, Wanzhen
    Yang, Jian
    Chen, Hengquan
    Hou, Yang
    Wang, Qi
    Gu, Meng
    He, Feng
    Xia, Ying
    Xia, Zheng
    Li, Zhongjian
    Yang, Bin
    Lei, Lecheng
    Yuan, Chris
    He, Qinggang
    Qiu, Ming
    Feng, Xinliang
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (04)