Bound and Continuum Intersubband Transitions in Colloidal Quantum Wells

被引:0
|
作者
Diroll, Benjamin T. [1 ]
Coropceanu, Igor [2 ,3 ]
Portner, Joshua [2 ,3 ]
Hua, Muchuan [1 ]
Schaller, Richard D. [1 ,4 ]
Talapin, Dmitri V. [1 ,2 ,3 ]
机构
[1] Ctr Nanoscale Mat, Argonne Natl Lab, Lemont, IL 60439 USA
[2] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[3] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[4] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
nanoplatelets; quantum well; colloidal atomiclayer deposition; intersubband; intraband; TO-CONTINUUM; CORE-SHELL; INTRABAND TRANSITIONS; CDSE NANOPLATELETS; CASCADE LASERS; SEEDED GROWTH; ENERGY; DOTS; ROD; PHOTOLUMINESCENCE;
D O I
10.1021/acs.nanolett.4c05769
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quantum well intersubband transitions are critical for quantum cascade lasers and infrared photodetectors. Control of band offsets allows bound-to-bound intersubband transitions, with confinement of both initial and final states, and bound-to-continuum transitions, in which only the initial state is energetically confined within the potential well. Both types of transitions are also achieved in colloidal CdSe wells by changing the heterostructure shell. Bare wells have narrow intersubband transitions spanning the near-infrared spectrum following effective mass predictions. Atomically precise core/shells enable a readily adjusted potential well for electrons. For CdSe/ZnS, bound-to-bound transitions are narrow and redshift with shell thickness. By contrast, broad bound-to-continuum absorptions are found in CdSe/CdS. Due to small conduction band offsets, higher conduction band states of the well are more delocalized into the CdS shell. These measurements provide unique data to understand the electronic structure of colloidal quantum wells and chart a path to atomically precise optoelectronic materials for the mid-infrared.
引用
收藏
页码:2366 / 2372
页数:7
相关论文
共 50 条
  • [1] NONPARABOLICITY AND A SUM-RULE ASSOCIATED WITH BOUND-TO-BOUND AND BOUND-TO-CONTINUUM INTERSUBBAND TRANSITIONS IN QUANTUM-WELLS
    SIRTORI, C
    CAPASSO, F
    FAIST, J
    SCANDOLO, S
    PHYSICAL REVIEW B, 1994, 50 (12): : 8663 - 8674
  • [2] Infrared absorption of multiple quantum wells: Bound to continuum transitions
    Oszwaldowski, R
    Jaskolski, W
    ACTA PHYSICA POLONICA A, 1998, 94 (03) : 473 - 478
  • [3] Fano profiles in bound-to-continuum intersubband transitions of InAs quantum dots
    Lelong, P
    Hirakawa, K
    Lee, SW
    Hirotani, K
    Sakaki, H
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, PTS I AND II, 2001, 87 : 1163 - 1164
  • [4] Intersubband Relaxation in CdSe Colloidal Quantum Wells
    Diroll, Benjamin T.
    Schaller, Richard D.
    ACS NANO, 2020, 14 (09) : 12082 - 12090
  • [5] Bound-continuum intersubband transition based optical nonlinearities in semiconductor quantum wells
    Indjin, D
    Mircetic, A
    Ikonic, Z
    Milanovic, V
    Todorovic, G
    SOLID STATE PHENOMENA, 1998, 61-2 : 231 - 234
  • [6] Quantum interference of intersubband transitions in coupled quantum wells
    Campman, K.L.
    Maranowski, K.D.
    Schmidt, H.
    Imamoglu, A.
    Gossard, A.C.
    Physica E: Low-Dimensional Systems and Nanostructures, 1999, 5 (01): : 16 - 26
  • [7] Quantum interference of intersubband transitions in coupled quantum wells
    Campman, KL
    Maranowski, KD
    Schmidt, H
    Imamoglu, A
    Gossard, AC
    PHYSICA E, 1999, 5 (1-2): : 16 - 26
  • [8] Intersubband transitions in InGaAsN/GaAs quantum wells
    Liu, W.
    Zhang, D.H.
    Fan, W.J.
    Hou, X.Y.
    Jiang, Z.M.
    Journal of Applied Physics, 2008, 104 (05):
  • [9] Intersubband transitions in ZnO multiple quantum wells
    Belmoubarik, M.
    Ohtani, K.
    Ohno, H.
    APPLIED PHYSICS LETTERS, 2008, 92 (19)
  • [10] Intersubband transitions in InGaAsN/GaAs quantum wells
    Liu, W.
    Zhang, D. H.
    Fan, W. J.
    Hou, X. Y.
    Jiang, Z. M.
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (05)