High electrostrain in a lead-free piezoceramic from a chemopiezoelectric effect

被引:1
|
作者
Xu, Ze [1 ]
Shi, Xiaoming [2 ,3 ]
Liu, Yi-Xuan [1 ,4 ]
Wang, Danyang [5 ]
Thong, Hao-Cheng [1 ]
Jiang, Yuqi [1 ]
Sha, Zijie [6 ]
Li, Zhao [1 ]
Yao, Fang-Zhou [4 ]
Cai, Xian-Xian [1 ]
Huang, Hao-Feng [1 ]
Xu, Zhanpeng [7 ]
Jin, Xinyu [8 ]
Li, Chen-Bo-Wen [1 ]
Zhang, Xin [1 ]
Ren, Xiaowei [1 ]
Dong, Zhihao [1 ]
Wu, Chaofeng [9 ]
Kabakov, Peter [10 ]
Zhu, Fangyuan [11 ]
Chen, Feng [12 ]
Tan, Peng [8 ]
Tian, Hao [8 ]
Sha, Haozhi [13 ]
Yu, Rong [13 ]
Xu, Ben [14 ]
Gong, Wen [4 ]
Wang, Xiaohui [1 ]
Li, Jing-Feng [1 ]
Skinner, Stephen J. [6 ]
Li, Ming [7 ]
Huang, Houbing [2 ]
Zhang, Shujun [10 ]
Wang, Ke [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing, Peoples R China
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing, Peoples R China
[3] Univ Sci & Technol Beijing, Dept Phys, Beijing, Peoples R China
[4] Res Ctr Adv Funct Ceram, Wuzhen Lab, Jiaxing, Peoples R China
[5] UNSW Sydney, Sch Mat Sci & Engn, Kensington, NSW, Australia
[6] Imperial Coll London, Dept Mat, London, England
[7] Univ Nottingham, Fac Engn, Nottingham, England
[8] Harbin Inst Technol, Sch Phys, Harbin, Peoples R China
[9] Tongxiang Tsingfeng Technol Co Ltd, Jiaxing, Peoples R China
[10] Univ Wollongong, Inst Superconducting & Elect Mat, Fac Engn & Informat Sci, Wollongong, NSW, Australia
[11] Chinese Acad Sci, Shanghai Synchrotron Radiat Facil, Shanghai Adv Res Inst, Shanghai, Peoples R China
[12] Chinese Acad Sci, Anhui Prov Key Lab Condensed Matter Phys Extreme C, High Magnet Field Lab, Hefei, Peoples R China
[13] Tsinghua Univ, Sch Mat Sci & Engn, Beijing, Peoples R China
[14] China Acad Engn Phys, Grad Sch, Beijing, Peoples R China
基金
欧盟地平线“2020”;
关键词
FREE PIEZOELECTRIC CERAMICS; GIANT PIEZOELECTRICITY; ZIRCONATE-TITANATE; STRAIN; POLARIZATION; SIMULATION; STABILITY; BATIO3;
D O I
10.1038/s41563-024-02092-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Piezoelectric materials are indispensable in electromechanical actuators, which require a large electrostrain with a fast and precise response. By designing a chemopiezoelectric effect, we developed an approach to achieve a high electrostrain of 1.9% under -3 kV mm-1, at 1 Hz, corresponding to an effective piezoelectric coefficient of >6,300 pm V-1 at room temperature in lead-free potassium sodium niobate piezoceramics. This electrostrain has satisfactory fatigue resistance and thermal stability, and low hysteresis, far outperforming existing lead-based and lead-free perovskite counterparts. From tracer diffusion, atomic optical emission spectrometry experiments, combined with machine-learning molecular dynamics and phase-field simulations, we attribute the high electrostrain to short-range hopping of oxygen vacancies near ceramic surfaces under an alternating electric field, which is supported by strain levels reaching 3.0% under the same applied field when the sample was annealed at a low oxygen partial pressure. These findings provide an additional degree of freedom for designing materials on the basis of defect engineering, which will favour not only the electrostrain of piezoelectrics but also the functional properties of a broader range of oxide-based materials.
引用
收藏
页码:565 / 573
页数:11
相关论文
共 50 条
  • [31] Low pO2 sintering and reoxidation of lead-free KNNLT piezoceramic laminates
    Reimann, T.
    Froehlich, S.
    Bochmann, A.
    Kynast, A.
    Toepfer, M.
    Hennig, E.
    Toepfer, J.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (01) : 344 - 351
  • [32] Effect of fretting in lead-free systems
    Gagnon, D
    Braunovic, A
    ELECTRICAL CONTACTS-2004: PROCEEDINGS OF THE 50TH IEEE HOLM CONFERENCE ON ELECTRICAL CONTACTS/THE 22ND INTERNATIONAL CONFERENCE ON ELECTRICAL CONTACTS, 2004, : 248 - 254
  • [33] Analysis of Lead-Free Piezoceramic-Based Power Ultrasonic Transducers for Wire Bonding
    Mathieson, Andrew
    DeAngelis, Dominick A.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2016, 63 (01) : 156 - 164
  • [34] Vibrocompaction of Lead-Free Piezoceramic Material Based on Solid Solutions of Potassium and Sodium Niobates
    Ponomarev, S. G.
    Smirnov, A. V.
    Reznichenko, A. V.
    Vasin, A. A.
    Tarasovskii, V. P.
    Shlyapin, A. D.
    Solov'ev, I. S.
    GLASS AND CERAMICS, 2020, 76 (9-10) : 346 - 350
  • [35] Vibrocompaction of Lead-Free Piezoceramic Material Based on Solid Solutions of Potassium and Sodium Niobates
    S. G. Ponomarev
    A. V. Smirnov
    A. V. Reznichenko
    A. A. Vasin
    V. P. Tarasovskii
    A. D. Shlyapin
    I. S. Solov’ev
    Glass and Ceramics, 2020, 76 : 346 - 350
  • [36] Optimizing electrical poling for tetragonal, lead-free BZT-BCT piezoceramic alloys
    Li, Binzhi
    Ehmke, Matthias C.
    Blendell, John E.
    Bowman, Keith J.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (15-16) : 3037 - 3044
  • [37] Dielectric and ferroelectric properties of lead-free piezoceramic of BNT-BT-ST system
    Mu, Wenfang
    Du, Huiling
    Shi, Xiang
    Du, Shaoming
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2011, 39 (12): : 1941 - 1946
  • [38] 0.4% Electrostrain at Low Field in Lead-Free Bi-Based Relaxor Piezoceramics by La Doping
    Thi Hinh Dinh
    Hyoung-Su Han
    Vu Diem Ngoc Tran
    Vinh Le Van
    Nguyen Hung
    Lee, Jae-Shin
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (10) : 6080 - 6086
  • [39] Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film
    Jeong, Chang Kyu
    Han, Jae Hyun
    Palneedi, Haribabu
    Park, Hyewon
    Hwang, Geon-Tae
    Joung, Boyoung
    Kim, Seong-Gon
    Shin, Hong Ju
    Kang, Il-Suk
    Ryu, Jungho
    Lee, Keon Jae
    APL MATERIALS, 2017, 5 (07):
  • [40] Large Electrostrain in K(Nb1-xMnx)O3 Lead-Free Piezoelectric Ceramics
    Kim, Jong-Hyun
    Kim, Dae-Hyeon
    Lee, Tae-Ho
    Lee, Tae-Gon
    Lee, Ji-Hyun
    Kim, Bo-Yun
    Nahm, Sahn
    Kang, Chong-Yun
    Ryu, Jungho
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (12) : 4031 - 4038