Microstrip patch antenna modeling using neural networks with knowledge-based regularization

被引:0
|
作者
Ekin Su Saçın [1 ]
Ahmet Cemal Durgun [2 ]
机构
[1] Middle East Technical University,Department of Electrical Electronics Engineering
[2] University of Massachusetts,Department of Electrical and Computer Engineering
关键词
Neural network; Surrogate model; Regularization; Microstrip patch antenna;
D O I
10.1007/s00521-024-10860-5
中图分类号
学科分类号
摘要
Neural networks (NNs) have proven a useful surrogate model for the design and optimization of high frequency structures including antennas. Black-box NNs are known to have scalability and accuracy problems as the dimension of the problem increases. This study proposes knowledge-based regularization methods, referred to as derivative, spectral, and magnitude regularization to address these issues. The proposed methods utilize the functional properties of S-parameters to improve the accuracy and prevent unphysical predictions. The NNs are trained and tested using a data set of 5000 samples generated by Latin Hypercube Sampling and simulated by Ansys HFSS. The goodness of fit is evaluated using Relative Squared Error. Derivative and spectral regularizations reduce the RSE loss from 0.052 to 0.046 and 0.043, respectively. When combined with magnitude regularization, up to 17%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 88%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} reduction in loss and passivity violations can be achieved, at the expense of a 37%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} increase in training time. Moreover, 25%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} less data is required, to maintain a similar loss to the reference NN.
引用
收藏
页码:3827 / 3837
页数:10
相关论文
共 50 条
  • [41] Land cover mapping using two neural networks and a knowledge-based processing
    Murai, H
    Omatu, S
    Oe, S
    SICE '97 - PROCEEDINGS OF THE 36TH SICE ANNUAL CONFERENCE, INTERNATIONAL SESSION PAPERS, 1997, : 1093 - 1098
  • [42] Knowledge-based performance-driven modeling of antenna structures
    Koziel, Slawomir
    Pietrenko-Dabrowska, Anna
    KNOWLEDGE-BASED SYSTEMS, 2022, 237
  • [43] Design of Microstrip Patch Antenna using Defected Microstrip Structure
    Kushwah, Vivek Singh
    Jain, Shivani
    Saxena, Gaurav
    2015 FIFTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT2015), 2015, : 37 - 40
  • [44] Analysis of an Elliptical Patch Antenna Using Artificial Neural Networks
    Gehani, Aarti
    Pujara, Dhaval
    Adhyaru, Dipak
    2012 IEEE ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP), 2012, : 176 - 177
  • [45] BANDWIDTH ENHANCEMENT OF MICROSTRIP PATCH ANTENNA BY USING SLOTTED PATCH
    Reddy, N. Vigneshwar
    Swaminathan, R.
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (03) : 5398 - 5406
  • [46] Bandwidth Enhancement of Microstrip Patch Antenna using Parasitic Patch
    Reddy, Mekala Harinath
    Joany, R. M.
    Reddy, M. Jayasaichandra
    Sugadev, M.
    Logashanmugam, E.
    2017 IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES AND MANAGEMENT FOR COMPUTING, COMMUNICATION, CONTROLS, ENERGY AND MATERIALS (ICSTM), 2017, : 295 - 298
  • [47] A microstrip antenna using patch array resonator
    Kim, D.
    Kim, M.
    Tanaka, M.
    Matsugatani, K.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (12) : 2926 - 2928
  • [48] Efficient Model of Slotted Patch Antenna based on Neural Networks
    Milijic, Marija
    Stankovic, Zoran
    Milovanovic, Bratislav
    TELSIKS 2009, VOLS 1 AND 2, 2009, : 384 - 387
  • [49] Polyester Based Wearable Microstrip Patch Antenna
    Joshi, J. G.
    Pattnaik, Shyam S.
    2013 IEEE APPLIED ELECTROMAGNETICS CONFERENCE (AEMC), 2013,
  • [50] A microstrip patch antenna design based on ANN
    He, Haizhuo
    Lan, Shengchang
    Liu, Beijia
    Chen, Lijia
    2021 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), 2021,