Wedge holographic complexity in Karch-Randall braneworld

被引:0
|
作者
Fu, Yichao [1 ]
Kim, Keun-Young [1 ,2 ]
机构
[1] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, 123 Cheomdan Gwagiro, Gwangju 61005, South Korea
[2] Gwangju Inst Sci & Technol, Res Ctr Photon Sci Technol, 123 Cheomdan Gwagiro, Gwangju 61005, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Gauge-Gravity Correspondence; Holography and Condensed Matter Physics (AdS/CMT);
D O I
10.1007/JHEP01(2025)174
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate holographic complexities in the context of wedge holography, focusing specifically on black string geometry in AdS3. The wedge spacetime is bounded by two end-of-the-world (EOW) branes with intrinsic Dvali-Gabadadze-Porrati (DGP) gravity. In line with this codimension-two holography, there are three equivalent perspectives: bulk perspective, brane perspective, and boundary perspective. Using both the "Complexity=Volume" (CV) and "Complexity=Action" (CA) proposals, we analyze the complexity in wedge black string geometry in the tensionless limit. By treating the branes as rigid, we find the late-time growth rates of CV and CA match exactly across bulk and brane perspectives. These results are consistent with those from JT gravity, with additional contributions from the intrinsic gravity of the branes. For fluctuating branes, we find that the late-time growth rates of CV and CA match between bulk and brane perspectives at the linear order of fluctuation. The CV phi h2 phi 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\phi_h<^>2}{\phi_0} $$\end{document} corrections from fluctuations, consistent with the findings in previous work. Moreover, the CA results reveal an additional constant term in the fluctuating branes case. We provide an interpretation of this in terms of gravitational edge mode effects. The distinct corrections arising from fluctuations in the CA and CV proposals suggest that the CV proposal is more sensitive to geometric details. Furthermore, we discuss these results in relation to Lloyd's bound on complexity, their general time dependence, and the effects of fluctuations.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Reflected entropy for communicating black holes. Part I. Karch-Randall braneworlds
    Mir Afrasiar
    Jaydeep Kumar Basak
    Ashish Chandra
    Gautam Sengupta
    Journal of High Energy Physics, 2023
  • [22] Reflected entropy for communicating black holes. Part I. Karch-Randall braneworlds
    Afrasiar, Mir
    Basak, Jaydeep Kumar
    Chandra, Ashish
    Sengupta, Gautam
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (02)
  • [23] Holographic Complexity of Braneworld in Horndeski Gravity
    Santos, Fabiano F.
    Sokoliuk, Oleksii
    Baransky, Alexander
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2023, 71 (2-3):
  • [24] Holographic complexity: braneworld gravity versus the Lloyd bound
    Aguilar-Gutierrez, Sergio E.
    Craps, Ben
    Hernandez, Juan
    Khramtsov, Mikhail
    Knysh, Maria
    Shukla, Ashish
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
  • [25] Gravastar model in Randall?Sundrum braneworld
    Arbanil, Jose D., V
    Moraes, Pedro H. R. S.
    Malheiro, Manuel
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (23)
  • [26] Randall-Sundrum braneworld in modified gravity
    Nakada, Hiroshi
    Ketov, Sergei V.
    PHYSICAL REVIEW D, 2016, 94 (10)
  • [27] Holographic Ricci dark energy in Randall-Sundrum braneworld: Avoidance of big rip and steady state future
    Feng, Chao-Jun
    Zhang, Xin
    PHYSICS LETTERS B, 2009, 680 (05) : 399 - 403
  • [28] Tachyon inflation in the holographic braneworld
    Bilic, Neven
    Dimitrijevic, Dragoljub D.
    Djordjevic, Goran S.
    Milosevic, Milan
    Stojanovic, Marko
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (08):
  • [29] Holographic cosmological models on the braneworld
    Lepe, Samuel
    Saavedra, Joel
    Pena, Francisco
    PHYSICS LETTERS B, 2009, 671 (03) : 323 - 326
  • [30] Tolman IV solution in the Randall-Sundrum braneworld
    Ovalle, J.
    Linares, F.
    PHYSICAL REVIEW D, 2013, 88 (10):