Adaptive Gaussian Mixture Filtering for Multi-sensor Maneuvering Cislunar Space Object Tracking

被引:0
|
作者
Iannamorelli, John L. [1 ]
Legrand, Keith A. [1 ]
机构
[1] Purdue Univ, Sch Aeronaut & Astronaut, 701 W Stadium Ave, W Lafayette, IN 47907 USA
来源
JOURNAL OF THE ASTRONAUTICAL SCIENCES | 2025年 / 72卷 / 01期
关键词
Cislunar space; Space domain awareness; Maneuvering object tracking; Nonlinear estimation; Negative information; Random finite sets; PROPAGATION; STATE;
D O I
10.1007/s40295-024-00478-z
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Successful space domain awareness (SDA) requires maintaining track custody of cooperative and noncooperative cislunar space objects (CSOs) through both ballistic and maneuvering trajectories. The surveillance of CSOs is particularly challenging due to the underlying chaotic multi-body dynamics, which makes uncertainty propagation more difficult when compared to Keplerian orbits. While methods exist for tracking cooperative spacecraft using high accuracy range measurements, the problem of passive noncooperative maneuvering CSO tracking has received considerably less attention. In this paper, CSO motion is modeled as a jump Markov system (JMS), where the CSO modality is unknown and subject to random switching. A novel adaptive Bayesian filter is proposed and shown to successfully maintain CSO track custody through both ballistic and maneuvering phases of an Artemis I-like trajectory.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] Adaptive Fingerprinting in Multi-Sensor Fusion for Accurate Indoor Tracking
    Belmonte-Hernandez, Alberto
    Hernandez-Penaloza, Gustavo
    Alvarez, Federico
    Conti, Giuseppe
    IEEE SENSORS JOURNAL, 2017, 17 (15) : 4983 - 4998
  • [32] A new adaptive weighted fusion algorithm for multi-sensor tracking
    Zhao, J
    Hu, SQ
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 285 - 287
  • [33] Multi-Sensor Tracking of a Maneuvering Target Using Multiple-Model Bernoulli Filter
    Qin, Yong
    Ma, Hong
    Cheng, Li
    Zhou, Xueqin
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (12): : 2633 - 2641
  • [34] Passive Multi-sensor Maneuvering Target Tracking based on UKF-IMM Algorithm
    Wu, Panlong
    Li, Xingxiu
    2009 WASE INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING, ICIE 2009, VOL II, 2009, : 135 - +
  • [35] Spaced-Based Multi-Sensor Maneuvering Group Targets Refined Tracking Algorithm
    Wang, Haipeng
    Lin, Xueyuan
    Tang, Tiantian
    Jia, Shuyi
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, INFORMATION MANAGEMENT AND NETWORK SECURITY, 2016, 47 : 274 - 278
  • [36] Software Tool for Evaluation of Multi-Sensor Object Tracking in ADAS Systems
    Medaglini, A.
    Bartolini, S.
    Di Massa, V.
    Dini, F.
    Ada User Journal, 2022, 43 (03): : 177 - 186
  • [37] Comparison of multi-sensor fusion methods for maritime target object tracking
    Han J.
    Cho Y.
    Kim J.
    Lee P.
    Journal of Institute of Control, Robotics and Systems, 2019, 25 (06) : 551 - 556
  • [38] Gaussian Mixtures Match and Fusion Algorithms for Multi-Sensor Multi-Target Tracking
    Han Shen-tu
    Rong, Yingjiao
    Guo, Yunfei
    Luo, Ji-an
    Shi, Yifang
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [39] Gaussian Mixture Probability Hypothesis Density Filter for Heterogeneous Multi-Sensor Registration
    Zeng, Yajun
    Wang, Jun
    Wei, Shaoming
    Zhang, Chi
    Zhou, Xuan
    Lin, Yingbin
    MATHEMATICS, 2024, 12 (06)
  • [40] THE APPLICATION OF ADAPTIVE KALMAN FILTERING TO THE TRACKING OF MANEUVERING TARGETS
    PERRIOTMATHONNA, D
    REVUE TECHNIQUE THOMSON-CSF, 1980, 12 (01): : 143 - 183