Characterizing a Generator Polynomial Matrix for the Dual of a Multi-Twisted Code

被引:1
|
作者
Taki Eldin, R. F. [1 ,2 ]
机构
[1] Ain Shams Univ, Fac Engn, Cairo 11517, Egypt
[2] Egypt Univ Informat, Cairo 15702, Egypt
关键词
multi-twisted code; Generator polynomial matrix; Dual code; Hermite normal form;
D O I
10.1134/S0001434624090347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The class of multi-twisted (MT) codes generalizes the classes of cyclic, constacyclic, quasi-cyclic, quasi-twisted, and generalized quasi-cyclic codes. We establish the correspondence between MT codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_q$$\end{document} of index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_q[x]$$\end{document}-submodules of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\mathbb{F}_q[x]\right)<^>\ell$$\end{document}. Thus, a basis of an MT code exists and is used to build a generator polynomial matrix (GPM). We prove some GPM properties, for example, relationship to code dimension, the identical equation, Hermite normal form. Hence, we prove a GPM formula for the dual code of an MT code. Finally, we obtain the necessary and sufficient conditions for the self-orthogonality and self-duality of MT codes.
引用
收藏
页码:777 / 792
页数:16
相关论文
共 50 条
  • [21] Multi-twisted additive codes over finite fields are asymptotically good
    Sharma, Sandeep
    Sharma, Anuradha
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (01): : 17 - 33
  • [22] Multi-twisted Additive Codes with Complementary Duals over Finite Fields
    S. Sharma
    A. Sharma
    Problems of Information Transmission, 2022, 58 : 32 - 57
  • [23] Making multi-twisted luminophores produce persistent room-temperature phosphorescence
    Shen, Shen
    Baryshnikov, Glib V.
    Xie, Qishan
    Wu, Bin
    Lv, Meng
    Sun, Hao
    Li, Zhongyu
    agren, Hans
    Chen, Jinquan
    Zhu, Liangliang
    CHEMICAL SCIENCE, 2023, 14 (04) : 970 - 978
  • [24] MDS multi-twisted Reed-Solomon codes with small dimensional hull
    Singh, Harshdeep
    Meena, Kapish Chand
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 16 (3): : 557 - 578
  • [25] MDS multi-twisted Reed-Solomon codes with small dimensional hull
    Harshdeep Singh
    Kapish Chand Meena
    Cryptography and Communications, 2024, 16 : 557 - 578
  • [26] The relation between transverse mechanical and electrical properties of the multi-twisted stage cables of CICC
    Ono, M
    Arata, M
    Hamajima, T
    Maeda, H
    Takano, H
    Fujioka, T
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1997, 7 (02) : 808 - 811
  • [27] Dual Entangled Polynomial Code: Three-Dimensional Coding for Distributed Matrix Multiplication
    Soto, Pedro
    Li, Jun
    Fan, Xiaodi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [28] A generalization of multi-twisted codes over finite fields, their Galois duals and Type II codes
    Varsha Chauhan
    Anuradha Sharma
    Journal of Applied Mathematics and Computing, 2022, 68 : 1413 - 1447
  • [29] A Method of Blind Recognition of Cyclic Code Generator Polynomial
    Wang, Jiafneg
    Yue, Yang
    Yao, Jun
    2010 6TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS NETWORKING AND MOBILE COMPUTING (WICOM), 2010,
  • [30] Hamming weight enumerators of multi-twisted codes with at most two non-zero constituents
    Chauhan, Varsha
    Sharma, Anuradha
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 76