Characterizing a Generator Polynomial Matrix for the Dual of a Multi-Twisted Code

被引:1
|
作者
Taki Eldin, R. F. [1 ,2 ]
机构
[1] Ain Shams Univ, Fac Engn, Cairo 11517, Egypt
[2] Egypt Univ Informat, Cairo 15702, Egypt
关键词
multi-twisted code; Generator polynomial matrix; Dual code; Hermite normal form;
D O I
10.1134/S0001434624090347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The class of multi-twisted (MT) codes generalizes the classes of cyclic, constacyclic, quasi-cyclic, quasi-twisted, and generalized quasi-cyclic codes. We establish the correspondence between MT codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_q$$\end{document} of index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_q[x]$$\end{document}-submodules of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\mathbb{F}_q[x]\right)<^>\ell$$\end{document}. Thus, a basis of an MT code exists and is used to build a generator polynomial matrix (GPM). We prove some GPM properties, for example, relationship to code dimension, the identical equation, Hermite normal form. Hence, we prove a GPM formula for the dual code of an MT code. Finally, we obtain the necessary and sufficient conditions for the self-orthogonality and self-duality of MT codes.
引用
收藏
页码:777 / 792
页数:16
相关论文
共 50 条
  • [1] EVERY Fq-LINEAR CODE IS EQUIVALENT TO A MULTI-TWISTED CODE
    Mahmoudi, Saadoun
    Samei, Karim
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2025, 19 (02) : 560 - 571
  • [2] EVERY Fq-LINEAR CODE IS EQUIVALENT TO A MULTI-TWISTED CODE
    Mahmoudi, Saadoun
    Samei, Karim
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024,
  • [3] Multi-twisted codes over finite fields and their dual codes
    Sharma, Anuradha
    Chauhan, Varsha
    Singh, Harshdeep
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 51 : 270 - 297
  • [4] A generalization of quasi-twisted codes: Multi-twisted codes
    Aydin, Nuh
    Halilovic, Ajdin
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 45 : 96 - 106
  • [5] Multi-twisted additive codes over finite fields
    Sandeep Sharma
    Anuradha Sharma
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2022, 63 : 287 - 320
  • [6] Multi-twisted additive codes over finite fields
    Sharma, Sandeep
    Sharma, Anuradha
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2022, 63 (02): : 287 - 320
  • [7] Linear Complementary Pairs of Multi-twisted Codes and their Characterizations
    Rubayya
    Ali, K. S. Mansoor
    Datt, M. Sumanth
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (02): : 493 - 500
  • [8] THE κ-GALOIS HULLS OF MULTI-TWISTED CODES: DIMENSION AND GENERATORS CONSTRUCTION
    Eldin, R. taki
    Sole, P.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2025, 24 (01) : 101 - 120
  • [9] Two-sided Galois duals of multi-twisted codes
    Taki Eldin, Ramy
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (04) : 3459 - 3487
  • [10] Analysis of Crosstalk Problem in Multi-Twisted Bundle of Multi-Twisted Wire Based on BSAS-BP Neural Network Algorithm and Multilayer Transposition Method
    Huang, Chao
    Zhao, Yang
    Yan, Wei
    Liu, Qiangqiang
    Zhou, Jianming
    Meng, Zhaojuan
    Mueed, Abdul
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2020, 35 (08): : 941 - 950