Propagation Dynamics in a Reaction-Diffusion System on Zika Virus Transmission

被引:0
|
作者
Pan, Shuxia [1 ]
Ma, Chongyan [1 ]
机构
[1] Lanzhou Univ Technol, Sch Sci, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonmonotonic system; Generalized upper and lower solutions; Eigenvalue problem; Comparison principle; TRAVELING-WAVES; ASYMPTOTIC SPEED; EXISTENCE; SPREAD; UNIQUENESS; STABILITY; EQUATIONS; FRONTS;
D O I
10.1007/s12346-024-01169-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article studies the propagation dynamics in a reaction-diffusion system modeling the Zika virus transmission, during which the infected vectors and hosts are regarded as invaders in spatial domain R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document}. The system does not satisfy the mixed quasimonotone condition. A constant threshold is defined by the corresponding eigenvalue problem at the disease free steady state. For the traveling wave solutions connecting the disease free steady state to the endemic steady state, the threshold is the minimal wave speed determining the existence or nonexistence of monotone traveling wave solutions in the sense of components. For the initial value problem with fast decaying initial condition, the threshold describes the spatial expansion ability of the infected vectors and hosts. It is also proved that for the wave speed larger than the threshold, the corresponding traveling wave solution is unique in the sense of phase shift and exponentially asymptotic stable in the proper weighted functional space. The stability also shows the spreading speed in the corresponding Cauchy problem with special decaying initial condition.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Pattern dynamics of the reaction-diffusion immune system
    Zheng, Qianqian
    Shen, Jianwei
    Wang, Zhijie
    PLOS ONE, 2018, 13 (01):
  • [22] The dynamics and pinning of a spike for a reaction-diffusion system
    Ward, MJ
    McInerney, D
    Houston, P
    Gavaghan, D
    Maini, P
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) : 1297 - 1328
  • [23] Patterns in a reaction-diffusion system, and statistical dynamics
    Rondoni, L
    NONLINEARITY, 1996, 9 (03) : 819 - 843
  • [24] Statistical pulse dynamics in a reaction-diffusion system
    Ohta, T
    Yoshimura, T
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 205 (1-4) : 189 - 194
  • [25] A reaction-diffusion system with periodic front dynamics
    Medvedev, GS
    Kaper, TJ
    Kopell, N
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (05) : 1601 - 1638
  • [26] Pattern dynamics analysis of a reaction-diffusion network propagation model
    Zhu, Linhe
    Chen, Siyi
    Shen, Shuling
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 220 : 425 - 444
  • [27] Reaction-Diffusion Systems and Propagation of Limit Cycles with Chaotic Dynamics
    Kawamoto, Shunji
    12TH CHAOTIC MODELING AND SIMULATION INTERNATIONAL CONFERENCE, 2020, : 135 - 149
  • [28] STABILIZATION OF A REACTION-DIFFUSION SYSTEM MODELLING MALARIA TRANSMISSION
    Anita, Sebastian
    Capasso, Vincenzo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (06): : 1673 - 1684
  • [29] Spatial propagation for a reaction-diffusion SI epidemic model with vertical transmission
    Zhao, Lin
    Huo, Haifeng
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 6012 - 6033
  • [30] DYNAMICS OF AN SIS REACTION-DIFFUSION EPIDEMIC MODEL FOR DISEASE TRANSMISSION
    Huang, Wenzhang
    Han, Maoan
    Liu, Kaiyu
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (01) : 51 - 66