Novel approach to quantitative risk assessment of reservoir landslides using a hybrid CNN-LSTM model

被引:0
|
作者
Wang, Lin [1 ,2 ]
Yang, Kangjie [1 ]
Wu, Chongzhi [3 ]
Zhou, Yang [1 ,2 ]
Liu, Junzhi [1 ,2 ]
Hu, Haoran [1 ]
机构
[1] Beijing Normal Univ, Sch Natl Safety & Emergency Management, Zhuhai 519087, Peoples R China
[2] Beijing Normal Univ, Joint Int Res Lab Catastrophe Simulat & Syst Risk, Zhuhai 519087, Peoples R China
[3] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Quantitative risk assessment; Reservoir landslides; Deep learning; Time-dependent failure risk; CNN-LSTM; RELIABILITY-ANALYSIS; VARIABILITY; FAILURE;
D O I
10.1007/s10346-024-02398-3
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Rational evaluation of slope safety status provides a scientific basis for landslide hazard prevention in practical engineering. The Three Gorges Reservoir Area (TGRA) is a famous landslide-prone area in China, and many reported landslide cases triggered by rainfall and/or reservoir water are distributed in it. Although probabilistic risk assessment provides a rational means to evaluate slope safety quantitatively, most existing studies pay attention to time-independent landslide risk assessment and ignore the influences of time-variant external environments (e.g., rainfall and/or reservoir water). This research aims to develop a novel quantitative landslide risk assessment approach by integrating advanced deep learning (DL) algorithms of CNN and LSTM. Taking Bazimen landslide for example in this study, the efficacy of the hybrid CNN-LSTM model and the other four DL algorithms are systematically investigated. Observations indicate that the hybrid CNN-LSTM reasonably portrays the temporal evolution regularity of time-dependent landslide risk and performs the best among the five candidate models in the Bazimen landslide example. The proposed approach addresses the dilemma of prompt landslide risk assessment under complex environments from the perspective of time-series forecasting and can serve as a reliable tool for engineers in landslide disaster prevention engineering practice.
引用
收藏
页码:943 / 956
页数:14
相关论文
共 50 条
  • [21] A novel method for video shot boundary detection using CNN-LSTM approach
    Abdelhalim Benoughidene
    Faiza Titouna
    International Journal of Multimedia Information Retrieval, 2022, 11 : 653 - 667
  • [22] CNN-LSTM: A Novel Hybrid Deep Neural Network Model for Brain Tumor Classification
    Dhaniya, R. D.
    Umamaheswari, K. M.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (01): : 1129 - 1143
  • [23] A novel method for video shot boundary detection using CNN-LSTM approach
    Benoughidene, Abdelhalim
    Titouna, Faiza
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2022, 11 (04) : 653 - 667
  • [24] A hybrid CNN-LSTM model for pre-miRNA classification
    Abdulkadir Tasdelen
    Baha Sen
    Scientific Reports, 11
  • [25] Prediction of Passenger Flow Based on CNN-LSTM Hybrid Model
    Wang Yu
    Wang Zhifei
    Wang Hongye
    Zhnag Junfeng
    Feng Ruilong
    2019 12TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2019), 2019, : 132 - 135
  • [26] A hybrid CNN-LSTM model for pre-miRNA classification
    Tasdelen, Abdulkadir
    Sen, Baha
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [27] Gold volatility prediction using a CNN-LSTM approach
    Vidal, Andres
    Kristjanpoller, Werner
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 157
  • [28] Machine Fault Detection Using a Hybrid CNN-LSTM Attention-Based Model
    Borre, Andressa
    Seman, Laio Oriel
    Camponogara, Eduardo
    Stefenon, Stefano Frizzo
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    SENSORS, 2023, 23 (09)
  • [29] Novel Optimizer MAdam for Efficient Fruit Grading and Quality Assessment Using CNN-LSTM
    Kale R.S.
    Shitole S.
    Journal of The Institution of Engineers (India): Series B, 2024, 105 (05) : 1285 - 1298
  • [30] A Hybrid Approach Based on GAN and CNN-LSTM for Aerial Activity Recognition
    Bousmina, Abir
    Selmi, Mouna
    Ben Rhaiem, Mohamed Amine
    Farah, Imed Riadh
    REMOTE SENSING, 2023, 15 (14)