The age-structured approach plays a crucial role in epidemiological modelling as it accounts for age-specific variations in susceptibility, transmission and disease progressions, providing a more accurate description of disease dynamics. In this paper, we create an age-structured epidemic model that incorporates age-dependent susceptibility and latency, as well as a relapse phase, with the objective of investigating the global dynamics of this model under the impact of that combination. The very important threshold parameter R0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{R}_{0}$\end{document} was introduced, and it has shown that it completely controls the stability of each equilibrium of the model. Based on the Lyapunov functional approach, we show that the disease-free equilibrium is globally asymptotically stable when R0<1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{R}_{0}<1$\end{document}, while the positive endemic equilibrium is globally asymptotically stable whenever R0>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{R}_{0}>1$\end{document}. Our results suggest that early diagnostic of latency individuals, reduction in transmission rate and improvements in treatment and heath-care of infected individuals may effectively control the spread of the disease.