Dynamics of a Double Age-Structured SEIRI Epidemic Model

被引:0
|
作者
Abderrazak Nabti [1 ]
Salih Djilali [2 ]
Malek Belghit [1 ]
机构
[1] University of Tebessa,Departement of Mathematics & Laboratory of Mathematics, and Informatic Systems (LAMIS)
[2] Hassiba Benbouali University,Faculty of Exact sciences and informatics, Mathematic Department
关键词
Age-structure epidemic model; Relapse; Basic reproduction number; Global stability; Lyapunov functional; 34D23; 34C60; 35L02;
D O I
10.1007/s10440-025-00723-z
中图分类号
学科分类号
摘要
The age-structured approach plays a crucial role in epidemiological modelling as it accounts for age-specific variations in susceptibility, transmission and disease progressions, providing a more accurate description of disease dynamics. In this paper, we create an age-structured epidemic model that incorporates age-dependent susceptibility and latency, as well as a relapse phase, with the objective of investigating the global dynamics of this model under the impact of that combination. The very important threshold parameter R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}$\end{document} was introduced, and it has shown that it completely controls the stability of each equilibrium of the model. Based on the Lyapunov functional approach, we show that the disease-free equilibrium is globally asymptotically stable when R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}<1$\end{document}, while the positive endemic equilibrium is globally asymptotically stable whenever R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}>1$\end{document}. Our results suggest that early diagnostic of latency individuals, reduction in transmission rate and improvements in treatment and heath-care of infected individuals may effectively control the spread of the disease.
引用
收藏
相关论文
共 50 条
  • [1] Dynamics and optimal control of an age-structured SIRVS epidemic model
    Duan, Xi-Chao
    Jung, Il Hyo
    Li, Xue-Zhi
    Martcheva, Maia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4239 - 4256
  • [2] An age-structured model for the AIDS epidemic
    Griffiths, J
    Lowrie, D
    Williams, J
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 124 (01) : 1 - 14
  • [3] Age-structured dengue epidemic model
    Cochran, John M.
    Xu, Yongzhi
    APPLICABLE ANALYSIS, 2014, 93 (11) : 2249 - 2276
  • [4] Threshold dynamics of an age-structured epidemic model with relapse and nonlinear incidence
    Yang, Junyuan (yangjunyuan00@126.com), 1600, Oxford University Press (82):
  • [5] Threshold dynamics of an age-structured epidemic model with relapse and nonlinear incidence
    Yang, Junyuan
    Chen, Yuming
    Kuniya, Toshikazu
    IMA JOURNAL OF APPLIED MATHEMATICS, 2017, 82 (03) : 629 - 655
  • [6] Threshold dynamics for an age-structured heroin epidemic model with distributed delays
    Djilali, Salih
    Bentout, Soufiane
    Touaoula, Tarik Mohamed
    Atangana, Abdon
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (13) : 13595 - 13619
  • [7] Global dynamics of approximate solutions to an age-structured epidemic model with diffusion
    M. Y. Kim
    Advances in Computational Mathematics, 2006, 25 : 451 - 474
  • [8] Global dynamics of approximate solutions to an age-structured epidemic model with diffusion
    Kim, M. -Y.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (04) : 451 - 474
  • [9] An age-structured epidemic model for the demographic transition
    Inaba, Hisashi
    Saito, Ryohei
    Bacaer, Nicolas
    JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 77 (05) : 1299 - 1339
  • [10] An age-structured epidemic model of rotavirus with vaccination
    Shim, E.
    Feng, Z.
    Martcheva, M.
    Castillo-Chavez, C.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (04) : 719 - 746