Analytical solutions of the Caudrey-Dodd-Gibbon equation using Khater II and variational iteration methods

被引:2
|
作者
Khater, Mostafa M. A. [1 ,2 ,3 ]
Alfalqi, Suleman H. [4 ]
机构
[1] Xuzhou Med Univ, Sch Med Informat & Engn, 209 Tongshan Rd, Xuzhou 221004, Jiangsu, Peoples R China
[2] Higher Inst Engn & Technol, Dept Basic Sci, Obour 10587, Cairo, Egypt
[3] Ugra State Univ, Inst Digital Econ, Khanty Mansiysk 628012, Russia
[4] Univ King Khalid, Dept Math, Appl Collage Mahayil, Abha, Saudi Arabia
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Nonlinear waves; Caudrey-Dodd-Gibbon equation; Khater II method; Variational iteration method; Soliton wave; Semi-analytical solutions; Stability; SOLITON MOLECULES; WAVE;
D O I
10.1038/s41598-024-75969-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study focuses on solving the Caudrey-Dodd-Gibbon (CDG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {CDG}$$\end{document}) equation using the Khater II (KII\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {KII}$$\end{document}) method and the Variational Iteration (VI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}{\mathbb {I}}$$\end{document}) method. The CDG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {CDG}$$\end{document} equation is a pivotal mathematical model in nonlinear wave dynamics, essential for understanding the evolution, interaction, and preservation of wave forms in dispersive media. Its applications span various fields, including fluid dynamics, nonlinear optics, and plasma physics, where it plays a crucial role in analyzing solitons and complex wave interactions. In this research, we meticulously implement the KII\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {KII}$$\end{document} and VI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}{\mathbb {I}}$$\end{document} methods to derive solutions for this nonlinear partial differential equation. Our findings reveal new aspects of the equation's behavior, offering deeper insights into nonlinear wave phenomena. The significance of this study lies in its contribution to advancing the understanding of these phenomena and their practical applications in the academic realm. The results underscore the effectiveness of the employed methods, their innovative contributions, and their relevance to applied mathematics.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Solving the fifth order Caudrey-Dodd-Gibbon (CDG) equation using the exp-function method
    Xu, Yu-Guang
    Zhou, Xin-Wei
    Yao, Li
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (01) : 70 - 73
  • [22] Breather soliton and cross two-soliton solutions for the fifth order Caudrey-Dodd-Gibbon (CDG) equation
    Chen, Hanlin
    Xu, Zhenhui
    Dai, Zhengde
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2015, 25 (03) : 651 - 655
  • [23] Breather, soliton molecules, soliton fusions and fissions, and lump wave of the Caudrey-Dodd-Gibbon equation
    Li, Bang-Qing
    Ma, Yu-Lan
    PHYSICA SCRIPTA, 2023, 98 (09)
  • [24] The Extended Multiple (G'/G)-Expansion Method and Its Application to the Caudrey-Dodd-Gibbon Equation
    Yang, Huizhang
    Li, Wei
    Yang, Biyu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [25] Some new solutions of the Caudrey–Dodd–Gibbon (CDG) equation using the conformable derivative
    Sadaf Bibi
    Naveed Ahmed
    Imran Faisal
    Syed Tauseef Mohyud-Din
    Muhammad Rafiq
    Umar Khan
    Advances in Difference Equations, 2019
  • [26] TWO ANALYTICAL METHODS FOR TIME FRACTIONAL CAUDREY-DODD-GIBBON-SAWADA-KOTERA EQUATION
    Chen, Bin
    Lu, Jun-Feng
    THERMAL SCIENCE, 2022, 26 (03): : 2535 - 2543
  • [27] Analytical Solutions to the Caudrey-Dodd-Gibbon-Sawada-Kotera Equation via Symbol Calculation Approach
    Gu, Yongyi
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [28] ANALYTICAL INVESTIGATION OF THE CAUDREY-DODD-GIBBON-KOTERA-SAWADA EQUATION USING SYMBOLIC COMPUTATION
    Xu, Xiao-Ge
    Meng, Xiang-Hua
    Zhang, Chun-Yi
    Gao, Yi-Tian
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (06):
  • [29] An Efficient Analytical Approach to Investigate Fractional Caudrey-Dodd-Gibbon Equations with Non-Singular Kernel Derivatives
    Fathima, Dowlath
    Alahmadi, Reham A.
    Khan, Adnan
    Akhter, Afroza
    Ganie, Abdul Hamid
    SYMMETRY-BASEL, 2023, 15 (04):
  • [30] 7th-Order Caudrey-Dodd-Gibbon Equation and Fisher-Type Equation by Homotopy Analysis Method
    Sharma, Ankita
    Arora, Rajan
    INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2020, 5 (02) : 272 - 282