Analytical solutions of the Caudrey-Dodd-Gibbon equation using Khater II and variational iteration methods

被引:2
|
作者
Khater, Mostafa M. A. [1 ,2 ,3 ]
Alfalqi, Suleman H. [4 ]
机构
[1] Xuzhou Med Univ, Sch Med Informat & Engn, 209 Tongshan Rd, Xuzhou 221004, Jiangsu, Peoples R China
[2] Higher Inst Engn & Technol, Dept Basic Sci, Obour 10587, Cairo, Egypt
[3] Ugra State Univ, Inst Digital Econ, Khanty Mansiysk 628012, Russia
[4] Univ King Khalid, Dept Math, Appl Collage Mahayil, Abha, Saudi Arabia
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Nonlinear waves; Caudrey-Dodd-Gibbon equation; Khater II method; Variational iteration method; Soliton wave; Semi-analytical solutions; Stability; SOLITON MOLECULES; WAVE;
D O I
10.1038/s41598-024-75969-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study focuses on solving the Caudrey-Dodd-Gibbon (CDG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {CDG}$$\end{document}) equation using the Khater II (KII\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {KII}$$\end{document}) method and the Variational Iteration (VI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}{\mathbb {I}}$$\end{document}) method. The CDG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {CDG}$$\end{document} equation is a pivotal mathematical model in nonlinear wave dynamics, essential for understanding the evolution, interaction, and preservation of wave forms in dispersive media. Its applications span various fields, including fluid dynamics, nonlinear optics, and plasma physics, where it plays a crucial role in analyzing solitons and complex wave interactions. In this research, we meticulously implement the KII\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {KII}$$\end{document} and VI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}{\mathbb {I}}$$\end{document} methods to derive solutions for this nonlinear partial differential equation. Our findings reveal new aspects of the equation's behavior, offering deeper insights into nonlinear wave phenomena. The significance of this study lies in its contribution to advancing the understanding of these phenomena and their practical applications in the academic realm. The results underscore the effectiveness of the employed methods, their innovative contributions, and their relevance to applied mathematics.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Soliton solutions of the Caudrey-Dodd-Gibbon equation using three expansion methods and applications
    Rani, Attia
    Ashraf, Muhammad
    Ahmad, Jamshad
    Ul-Hassan, Qazi Mahmood
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (03)
  • [2] Computational and numerical wave solutions of the Caudrey-Dodd-Gibbon equation
    Khater, Mostafa M. A.
    HELIYON, 2023, 9 (02)
  • [3] A study on the bilinear Caudrey-Dodd-Gibbon equation
    Jiang, Bo
    Bi, Qinsheng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) : 4530 - 4533
  • [4] Backlund transformation, Lax pair, and solutions for the Caudrey-Dodd-Gibbon equation
    Qu, Qi-Xing
    Tian, Bo
    Sun, Kun
    Jiang, Yan
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (01)
  • [5] Some new solutions of the Caudrey-Dodd-Gibbon (CDG) equation using the conformable derivative
    Bibi, Sadaf
    Ahmed, Naveed
    Faisal, Imran
    Mohyud-Din, Syed Tauseef
    Rafiq, Muhammad
    Khan, Umar
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [6] New Wave Solutions for the Two-Mode Caudrey-Dodd-Gibbon Equation
    Cimpoiasu, Rodica
    Constantinescu, Radu
    AXIOMS, 2023, 12 (07)
  • [7] A new study of soliton solutions for the variable coefficients Caudrey-Dodd-Gibbon equation
    Yin, Qinglian
    Gao, Ben
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2022, 16 (01): : 763 - 773
  • [8] On the analysis of an analytical approach for fractional Caudrey-Dodd-Gibbon equations
    Singh, Jagdev
    Gupta, Arpita
    Baleanu, Dumitru
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (07) : 5073 - 5082
  • [9] Multiple-soliton solutions for the fifth order Caudrey-Dodd-Gibbon (CDG) equation
    Wazwaz, Abdul-Majid
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (02) : 719 - 724
  • [10] Soliton molecules and some novel mixed solutions for the extended Caudrey-Dodd-Gibbon equation
    Ma, Hongcai
    Wang, Yuxin
    Deng, Aiping
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 168