Semantic segmentation network for mangrove tree species based on UAV remote sensing images

被引:0
|
作者
Wang, Xin [1 ,2 ,3 ]
Zhang, Yu [2 ]
Ca, Jingye [1 ]
Qin, Qin [3 ]
Feng, Yi [3 ]
Yan, Jingke [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610000, Peoples R China
[2] Guilin Univ Elect Sci & Technol China, Sch Comp Sci & Informat Secur, Guilin 541004, Peoples R China
[3] Guilin Univ Elect Sci & Technol China, Sch Comp Engn, Beihai 536000, Peoples R China
[4] Southwest Jiaotong Univ, State Key Lab Rail Transit Vehicle Syst, Chengdu 610000, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Feature fusion; Mangrove species segmentation; Semantic segmentation; UAV remote sensing; ECOSYSTEMS;
D O I
10.1038/s41598-024-81511-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mangroves are special vegetation that grows in the intertidal zone of the coast and has extremely high ecological and environmental value. Different mangrove species exhibit significant differences in ecological functions and environmental responses, so accurately identifying and distinguishing these species is crucial for ecological protection and monitoring. However, mangrove species recognition faces challenges, such as morphological similarity, environmental complexity, target size variability, and data scarcity. Traditional mangrove monitoring methods mainly rely on expensive and operationally complex multispectral or hyperspectral remote sensing sensors, which have high data processing and storage costs, hindering large-scale application and popularization. Although hyperspectral monitoring is still necessary in certain situations, the low identification accuracy in routine monitoring severely hinders ecological analysis. To address these issues, this paper proposes the UrmsNet segmentation network, aimed at improving identification accuracy in routine monitoring while reducing costs and complexity. It includes an improved lightweight convolution SCConv, an Adaptive Selective Attention Module (ASAM), and a Cross-Layer Feature Fusion Module (CLFFM). ASAM adaptively extracts and fuses features of different mangrove species, enhancing the network's ability to characterize mangrove species with similar morphology and in complex environments. CLFFM combines shallow details and deep semantic information to ensure accurate segmentation of mangrove boundaries and small targets.Additionally, this paper constructs a high-quality RGB image dataset for mangrove species segmentation to address the data scarcity problem. Compared to traditional methods, our approach is more precise and efficient. While maintaining relatively low parameters and computational complexity (FLOPs), it achieves excellent performance with mIoU and mPA metrics of 92.21% and 95.98%, respectively. This performance is comparable to the latest methods using multispectral or hyperspectral data but significantly reduces cost and complexity. By combining periodic hyperspectral monitoring with UrmsNet-supported routine monitoring, a more comprehensive and efficient mangrove ecological monitoring can be achieved.These research findings provide a new technical approach for large-scale, low-cost monitoring of important ecosystems such as mangroves, with significant theoretical and practical value. Furthermore, UrmsNet also demonstrates excellent performance on LoveDA, Potsdam, and Vaihingen datasets, showing potential for wider application.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Orientation Attention Network for semantic segmentation of remote sensing images?
    Wang, Junxiao
    Feng, Zhixi
    Jiang, Yao
    Yang, Shuyuan
    Meng, Huixiao
    KNOWLEDGE-BASED SYSTEMS, 2023, 267
  • [12] Convolutional Neural Network for the Semantic Segmentation of Remote Sensing Images
    Alam, Muhammad
    Wang, Jian-Feng
    Guangpei, Cong
    Yunrong, L., V
    Chen, Yuanfang
    MOBILE NETWORKS & APPLICATIONS, 2021, 26 (01): : 200 - 215
  • [13] MSNet: multispectral semantic segmentation network for remote sensing images
    Tao, Chongxin
    Meng, Yizhuo
    Li, Junjie
    Yang, Beibei
    Hu, Fengmin
    Li, Yuanxi
    Cui, Changlu
    Zhang, Wen
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 1177 - 1198
  • [14] SRANet: semantic relation aware network for semantic segmentation of remote sensing images
    Gao, Liang
    Qian, Yurong
    Liu, Hui
    Zhong, Xiwu
    Xiao, Zhengqing
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (01)
  • [15] CLOUD DETECTION FOR REMOTE SENSING IMAGES BASED ON DIFFERENCE FEATURES AND SEMANTIC SEGMENTATION NETWORK
    Ma, Nan
    Sun, Lin
    Zhou, Chenghu
    He, Yawen
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 603 - 606
  • [16] Multilevel Feature Interaction Network for Remote Sensing Images Semantic Segmentation
    Chen, Hongkun
    Luo, Huilan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 19831 - 19852
  • [17] Semantic Segmentation of Remote Sensing Images Using Multiscale Decoding Network
    Zhang, Xiaoqin
    Xiao, Zhiheng
    Li, Dongyang
    Fan, Mingyu
    Zhao, Li
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (09) : 1492 - 1496
  • [18] Multilateral Semantic With Dual Relation Network for Remote Sensing Images Segmentation
    Zhao, Weiheng
    Cao, Jiannong
    Dong, Xueyan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 506 - 518
  • [19] Hidden Path Selection Network for Semantic Segmentation of Remote Sensing Images
    Yang, Kunping
    Tong, Xin-Yi
    Xia, Gui-Song
    Shen, Weiming
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [20] Semantic Segmentation of Remote Sensing Images Using Multiway Fusion Network
    Wu, Xiaosuo
    Wang, Liling
    Wu, Chaoyang
    Guo, Cunge
    Yan, Haowen
    Qiao, Ze
    SIGNAL PROCESSING, 2024, 215