GAINET: Enhancing drug-drug interaction predictions through graph neural networks and attention mechanisms

被引:0
|
作者
Das, Bihter [1 ]
Dagdogen, Huseyin Alperen [1 ]
Kaya, Muhammed Onur [1 ]
Tuncel, Ozkan [1 ]
Akgul, Muhammed Samet [1 ]
Das, Resul [1 ]
机构
[1] Firat Univ, Fac Technol, Dept Software Engn, TR-23119 Elazig, Turkiye
关键词
Drug-target interactions; Graph neural networks; Attention mechanism; Deep learning; Environmental sustainability; Pharmacoinformatics;
D O I
10.1016/j.chemolab.2025.105337
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Drug-drug interactions (DDIs) area significant challenge in modern healthcare, especially in polypharmacy, where patients are given more than one drug at the same time. Accurate prediction of DDIs plays an important role in reducing adverse effects and improving recovery inpatients. In this study, we propose GAINET, a derivative of the graph-based neural network model enhanced with attention mechanisms, to accurately improve the prediction of drug-drug interactions. The model effectively learns interaction models by focusing on critical features in drug structures and their interactions with each other through molecular graph representations. For the performance evaluation of GAINET, which is trained on the DrugBank dataset containing 191,870 DDI examples, basic metrics such as AUC-ROC, F1 score, precision and recall are used. The obtained accuracy of 0.9050, F1 score of 0.9096 and AUC-ROC of 0.9505 indicate that GAINET outperforms many state-of-the-art models and has good generalization ability even on previously untested data. Moreover, the molecular attention mechanism enables interpretable predictions by highlighting the interaction-specific molecular substructures. All these findings indicate that GAINET, our proposed model for DDI prediction, can serve as a valuable and useful tool and advance the development of reliable pharmacological treatments.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Enhancing Drug-Drug Interaction Prediction Using Deep Attention Neural Networks
    Liu, Shichao
    Zhang, Yang
    Cui, Yuxin
    Qiu, Yang
    Deng, Yifan
    Zhang, Zhongfei
    Zhang, Wen
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (02) : 976 - 985
  • [2] AGCN: Attention-based graph convolutional networks for drug-drug interaction extraction
    Park, Chanhee
    Park, Jinuk
    Park, Sanghyun
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 159
  • [3] Predicting Drug-drug Interaction with Graph Mutual Interaction Attention Mechanism
    Yan, Xiaoying
    Gu, Chi
    Feng, Yuehua
    Han, Jiaxin
    METHODS, 2024, 223 : 16 - 25
  • [4] MGDDI: A multi-scale graph neural networks for drug-drug interaction prediction
    Geng, Guannan
    Wang, Lizhuang
    Xu, Yanwei
    Wang, Tianshuo
    Ma, Wei
    Duan, Hongliang
    Zhang, Jiahui
    Mao, Anqiong
    METHODS, 2024, 228 : 22 - 29
  • [5] Prediction of Drug-Drug Interaction Using an Attention-Based Graph Neural Network on Drug Molecular Graphs
    Feng, Yue-Hua
    Zhang, Shao-Wu
    MOLECULES, 2022, 27 (09):
  • [6] GraphDDI: Graph Neural Network for Prediction of Drug-Drug Interaction
    Gupta, Suyash
    Laghuvarapu, Siddhartha
    Priyakumar, U. Deva
    ARTIFICIAL INTELLIGENCE IN HEALTHCARE, PT I, AIIH 2024, 2024, 14975 : 17 - 30
  • [7] Enhancing Knowledge Graph Embedding with Hierarchical Self-Attention and Graph Neural Network Techniques for Drug-Drug Interaction Prediction in Virtual Reality Environments
    Jiang, Lizhen
    Zhang, Sensen
    SYMMETRY-BASEL, 2024, 16 (05):
  • [8] Predicting Drug-drug Interactions Using Heterogeneous Graph Attention Networks
    Tanvir, Farhan
    Saifuddin, Khaled Mohammed
    Islam, Muhammad Ifte Khairul
    Akbas, Esra
    14TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, BCB 2023, 2023,
  • [9] Directed graph attention networks for predicting asymmetric drug-drug interactions
    Feng, Yi-Yang
    Yu, Hui
    Feng, Yue-Hua
    Shi, Jian-Yu
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (03)
  • [10] Prediction of drug-drug interaction events using graph neural networks based feature extraction
    Al-Rabeah, Mohammad Hussain
    Lakizadeh, Amir
    SCIENTIFIC REPORTS, 2022, 12 (01)